scholarly journals Selected aspects of a cold forging process for hollow balls

Author(s):  
Grzegorz Samołyk ◽  
Grzegorz Winiarski

AbstractThis paper presents the results of a study investigating a cold forging process for producing hollow balls with different wall thicknesses. The study was performed by FEM numerical modelling, which made it possible to obtain a wide spectrum of results. For the analysis of FEM results obtained for problematic cases (shape defects in forged balls), novel hypotheses for results interpretation are proposed. The FEM numerical model and hypotheses are then verified via experimental testing, and selected theoretical results are compared with experimental findings. Finally, obtained results are discussed (e.g. the effect of billet dimensions on forging conditions, wall thickness and hole size), a method for FEM results interpretation is presented, and design-related solutions ensuring the production of defect-free hollow balls are proposed.

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1026
Author(s):  
A.N. Saquib ◽  
H.M.T. Khaleed ◽  
Irfan Anjum Badruddin ◽  
Ali Algahtani ◽  
M.F. Addas ◽  
...  

Finite Element Method based techniques apply to a wide spectrum of engineering applications including manufacturing. The flexibility to achieve optimized results by simulations adds another dimension to process-development. The efficiency due to simulation is enhanced many folds for developing desired components by reducing the cost as well as time. This paper investigates cold forging process to be adopted to produce camshafts with a target to minimize flash as well as under filling. These two factors being major problems encountered when cold forging is to be adopted for complex shaped products. The current work is primarily concerned with the development of an optimized preform design for a V8 engine camshaft. The work involved the Solid modeling of the camshaft on AutoCAD and further analyzing the developed model through finite element analysis using Deform 3D. The analysis involved understanding of metal flow, volumetric analysis and die stresses in the forging process. The materials considered for the work-piece and the dies are AISI 8620 and AISI-H-26 respectively. The sample camshaft was taken from a standard Dodge Challenger V8 engine. 10 different cases are analyzed to find out the best possible scenario. It is fund that the stress level for the developed model was very much within the design limit of the material.


2021 ◽  
Author(s):  
Praveenkumar M. Petkar ◽  
V. N. Gaitonde ◽  
T. K. G. Raju

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


CIRP Annals ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 245-248 ◽  
Author(s):  
P. Bariani ◽  
W.A. Knight ◽  
F. Jovane

Author(s):  
Michael Zedelmair ◽  
Abhijit Mukherjee

Abstract In this study, a numerical model of the insulin depot formation and absorption in the subcutaneous adipose tissue is developed using the commercial Computational Fluid Dynamics (CFD) software. A better understanding of these mechanisms can be helpful in the development of new devices and cannula geometries as well as predicting the concentration of insulin in the blood. The injection method considered in this simulation is by the use of an insulin pump using a rapid acting U100 insulin analogue. The depot formation is analyzed running Bolus injections ranging from 5-15 units of insulin corresponding to 50-150µl. The insulin is injected into the subcutaneous tissue in the abdominal region. The tissue is modeled as a fluid saturated porous media. An anisotropic approach to define the tissue permeability is studied by varying the value of the porosity in parallel and perpendicular direction having an impact on the viscous resistance to the flow. Following recent experimental findings this configuration results in a disk shaped insulin depot. To be able to run the simulation over longer timeframes the depot formation model has been extended implementing the process of absorption of insulin from the depot. The developed model is then used to analyze the formation of the insulin depot in the tissue when using different flow rates and cannula geometries. The numerical model is an effective option to evaluate new cannula designs prior to the manufacturing and testing of prototypes, which are rather time consuming and expensive.


2016 ◽  
Vol 7 ◽  
pp. 43
Author(s):  
Emil Pitz ◽  
Matei-Constantin Miron ◽  
Imre Kállai ◽  
Zoltán Major

The current paper is describing the implementation of a multiscale numerical model for prediction of stiffness and strength in braided composites. The model is validated by experimental testing of single-layer braided tubes under torsional loading utilising digital image correlation (DIC). For the numerical model the entire braided structure is modelled at yarn detail level, taking into account the yarn behaviour as well as individual yarn-to-yarn interactions by using cohesive contact definitions. By means of Hashin’s failure criteria and cohesive contact damage, failure of the yarns and failure of the yarn-to-yarn interface is being accounted for. Thereby the material failure behaviour can be predicted. For validation of the model, torsion tests of biaxially braided single-layer composite tubes were performed. The strain distribution at the specimen surface was studied using the DIC system ARAMIS in 3D mode.


Sign in / Sign up

Export Citation Format

Share Document