Some investigations on punch force in cold forging process by FE simulation

2021 ◽  
Author(s):  
Praveenkumar M. Petkar ◽  
V. N. Gaitonde ◽  
T. K. G. Raju
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


CIRP Annals ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 245-248 ◽  
Author(s):  
P. Bariani ◽  
W.A. Knight ◽  
F. Jovane

2020 ◽  
Vol 311 ◽  
pp. 88-93
Author(s):  
Jong Bok Byun ◽  
Hyun Joon Lee ◽  
Jong Bok Park ◽  
Il Dong Seo ◽  
Man Soo Joun

In this paper, non-isothermal analysis of an automatic multi-stage cold forging process of a ball-stud is conducted using a new material model which is a closed form function of strain, temperature and strain rate covering low and warm temperatures for high-strength stainless steel SUS304. An assembled die structural analysis scheme is employed for revealing the detailed die stresses, which is of great importance for process and die design for metal forming of the materials with high strengths. Die elastic deformation is dealt with to predict final geometries of material with higher accuracy. A complete analysis model is proposed to be used for optimal design of process and die designs in automatic multi-stage cold forging of high-strength materials.


2008 ◽  
Vol 575-578 ◽  
pp. 517-524 ◽  
Author(s):  
Yao Zong Zhang ◽  
Jian Bo Huang ◽  
Xue Lin ◽  
Quan Shui Fang

The cold closed-die forging process of the gear is a kind of new technique of the precise forming of gear in recent years. In this paper, the cold closed-die forging process of differential satellite gear in car was analyzed through numerical simulation method. Forming mold was designed with Pro/E Wildfire2.0 which included four components : upper punch, lower punch, tooth shape upper die and lower die for Normal Cone. The three-dimensional models of satellite bevel gear mould were built and imported into numerical simulation software DEFORM-3D. Because the gear has the uniform circumferential features, in order to save time and improve the accuracy, only one tooth was simulated, and the full simulation outcome of 10 teeth was mirrored from this one. Through the numerical simulation analysis of DEFORM-3D, the instantaneous deformation and stress filed were gained. Forming defects were forecasted and the cold closed-die forging rule for satellite gear used in car was obtained which can provide effective references for no-flash cold forging process of planet bevel gear and the mold design.


2011 ◽  
Vol 675-677 ◽  
pp. 1007-1010 ◽  
Author(s):  
Ali Halouani ◽  
Yu Ming Li ◽  
Boussad Abbès ◽  
Y.Q. Guo

The simplified method called Inverse Approach (I.A.) has been developed by Batoz, Guo et al.[1] for the sheet forming modelling. They are less accurate but much faster than classical incremental approaches. The main aim of the present work is to study the feasibility of the I.A. for the axi-symmetric forging process modelling. In contrast to the classical incremental methods, the I.A. exploits the known shape of the final part and executes the calculation from the final part to the initial billet. Two assumptions are used in this study: the assumption of proportional loading for cold forging gives an integrated constitutive law without considering the strain path and the viscoplasticity, the assumption of contact between the part and tools allows to replace the tool actions by nodal forces without contact treatment. The comparison with Abaqus shows that the I.A. can obtain a good strain distribution and it will be a good tool for the preliminary preform design.


2012 ◽  
Vol 184-185 ◽  
pp. 1255-1258
Author(s):  
Zhuang Li ◽  
Di Wu ◽  
Wei Lv

The important factors that affect the formability of the cold forging steel are its surface quality and internal defects. The cracking phenomenon was taken place during cold forging of ML25Mn steel. In this study, microstructural analyses were made on around the cracked regions of the steel. The reason of cracking, which occurred during cold forging for ML25Mn steel, was investigated based on SEM observation in detail. The results have shown that the crack forming during cold forging process is not related to the chemical composition for ML25Mn steel. Cracking is not resulted from high hardness of the steel rods. There are some non-metallic inclusions in the matrix of ML25Mn steel, and the film-like inclusions are composed of MnS, CaS and complex oxides containing Mg, Al, Mn, Fe, S, Ca and O. The formation of non-metallic inclusions is the result of the deoxidation and the solidification during smelting and casting of steel.


Sign in / Sign up

Export Citation Format

Share Document