scholarly journals Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya

2014 ◽  
Vol 196 (5) ◽  
pp. 345-355 ◽  
Author(s):  
Alfredo F. Braña ◽  
Miriam Rodríguez ◽  
Pallab Pahari ◽  
Jurgen Rohr ◽  
Luis A. García ◽  
...  
2019 ◽  
Author(s):  
Andrew S. Urquhart ◽  
Jinyu Hu ◽  
Yit-Heng Chooi ◽  
Alexander Idnurm

AbstractBackgroundViriditoxin is one of the ‘classical’ secondary metabolites produced by fungi and that has antibacterial and other activities; however, the mechanism of its biosynthesis has remained unknown.ResultsHere, a gene cluster responsible for its synthesis was identified, using bioinformatic approaches from two species that produce viriditoxin and then through gene disruption and metabolite profiling. All eight genes in the cluster inPaecilomyces variotiiwere mutated, revealing their roles in the synthesis of this molecule and establishing its biosynthetic pathway which includes an interesting Baeyer-Villiger monooxygenase catalyzed reaction. Additionally, a candidate catalytically-inactive hydrolase was identified as being required for the stereoselective biosynthesis of (M)-viriditoxin. The localization of two proteins were assessed by fusing these proteins to green fluorescent protein, revealing that at least two intracellular structures are involved in the compartmentalization of the synthesis steps of this metabolite.ConclusionsThe full pathway for synthesis of viriditoxin was established by a combination of genomics, bioinformatics, gene disruption and chemical analysis processes. Hence, this work reveals the basis for the synthesis of an understudied class of fungal secondary metabolites and provides a new model species for understanding the synthesis of biaryl compounds with a chiral axis.


2012 ◽  
Vol 78 (12) ◽  
pp. 4468-4480 ◽  
Author(s):  
Lena Studt ◽  
Philipp Wiemann ◽  
Karin Kleigrewe ◽  
Hans-Ulrich Humpf ◽  
Bettina Tudzynski

ABSTRACTFusarium fujikuroiproduces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified inFusariumspp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designatefsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data.


2000 ◽  
Vol 44 (5) ◽  
pp. 1266-1275 ◽  
Author(s):  
Ignacio Aguirrezabalaga ◽  
Carlos Olano ◽  
Nerea Allende ◽  
Leticia Rodriguez ◽  
Alfredo F. Braña ◽  
...  

ABSTRACT A 9.8-kb DNA region from the oleandomycin gene cluster inStreptomyces antibioticus was cloned. Sequence analysis revealed the presence of 8 open reading frames encoding different enzyme activities involved in the biosynthesis of one of the two 2,6-deoxysugars attached to the oleandomycin aglycone:l-oleandrose (the oleW, oleV,oleL, and oleU genes) andd-desosamine (the oleNI and oleTgenes), or of both (the oleS and oleE genes). AStreptomyces albus strain harboring the oleG2glycosyltransferase gene integrated into the chromosome was constructed. This strain was transformed with two different plasmid constructs (pOLV and pOLE) containing a set of genes proposed to be required for the biosynthesis of dTDP-l-olivose and dTDP-l-oleandrose, respectively. Incubation of these recombinant strains with the erythromycin aglycon (erythronolide B) gave rise to two new glycosylated compounds, identified asl-3-O-olivosyl- andl-3-O-oleandrosyl-erythronolide B, indicating that pOLV and pOLE encode all enzyme activities required for the biosynthesis of these two 2,6-dideoxysugars. A pathway is proposed for the biosynthesis of these two deoxysugars in S. antibioticus.


Microbiology ◽  
1995 ◽  
Vol 141 (6) ◽  
pp. 1385-1393 ◽  
Author(s):  
K. A. Reid ◽  
R. D. Bowden ◽  
L. Dasaradhi ◽  
M. R. Amin ◽  
D. B. Harper

MedChemComm ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 780-788 ◽  
Author(s):  
Behnam Nazari ◽  
Clarissa C. Forneris ◽  
Marcus I. Gibson ◽  
Kyuho Moon ◽  
Kelsey R. Schramma ◽  
...  

We report the largest actinomycete genome to date, which encodes >30 secondary metabolites, including the kistamicin biosynthetic gene cluster.


2006 ◽  
Vol 188 (11) ◽  
pp. 4142-4147 ◽  
Author(s):  
Chunhua Zhao ◽  
Jianhua Ju ◽  
Steven D. Christenson ◽  
Wyatt C. Smith ◽  
Danfeng Song ◽  
...  

ABSTRACT Oxazolomycin (OZM), a hybrid peptide-polyketide antibiotic, exhibits potent antitumor and antiviral activities. Using degenerate primers to clone genes encoding methoxymalonyl-acyl carrier protein (ACP) biosynthesis as probes, a 135-kb DNA region from Streptomyces albus JA3453 was cloned and found to cover the entire OZM biosynthetic gene cluster. The involvement of the cloned genes in OZM biosynthesis was confirmed by deletion of a 12-kb DNA fragment containing six genes for methoxymalonyl-ACP biosynthesis from the specific region of the chromosome, as well as deletion of the ozmC gene within this region, to generate OZM-nonproducing mutants.


2018 ◽  
Vol 49 ◽  
pp. 299-315 ◽  
Author(s):  
Liliya Horbal ◽  
Filipe Marques ◽  
Suvd Nadmid ◽  
Marta V. Mendes ◽  
Andriy Luzhetskyy

2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Anna Tippelt ◽  
Markus Nett ◽  
M. Soledad Vela Gurovic

ABSTRACT Streptomyces albus CAS922 was isolated from sunflower seed hulls. Its fully sequenced genome harbors a multitude of genes for carbohydrate-active enzymes, which likely facilitate growth on lignocellulosic biomass. Furthermore, the presence of 27 predicted biosynthetic gene clusters indicates a significant potential for the production of bioactive secondary metabolites.


2019 ◽  
Vol 72 (5) ◽  
pp. 311-315 ◽  
Author(s):  
Chunshuai Huang ◽  
Chunfang Yang ◽  
Wenjun Zhang ◽  
Yiguang Zhu ◽  
Liang Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document