scholarly journals Continued Gravitational Collapse for Newtonian Stars

Author(s):  
Yan Guo ◽  
Mahir Hadžić ◽  
Juhi Jang

Abstract The classical model of an isolated selfgravitating gaseous star is given by the Euler–Poisson system with a polytropic pressure law $$P(\rho )=\rho ^\gamma $$ P ( ρ ) = ρ γ , $$\gamma >1$$ γ > 1 . For any $$1<\gamma <\frac{4}{3}$$ 1 < γ < 4 3 , we construct an infinite-dimensional family of collapsing solutions to the Euler–Poisson system whose density is in general space inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface, with continuous mass absorption at the origin. The leading order singular behavior is described by an explicit collapsing solution of the pressureless Euler–Poisson system.

1998 ◽  
Vol 13 (38) ◽  
pp. 3069-3072
Author(s):  
L. C. GARCIA DE ANDRADE

Negative energy densities in spinning matter sources of non-Riemannian ultrastatic traversable wormholes require the spin energy density to be higher than the negative pressure or the radial tension. Since the radial tension necessary to support wormholes is higher than the spin density in practice, it seems very unlikely that wormholes supported by torsion may exist in nature. This result corroborates earlier results by Soleng against the construction of the closed time-like curves (CTC) in space–time geometries with spin and torsion. It also agrees with earlier results by Kerlick according to which Einstein–Cartan (EC) gravity torsion sometimes enhance the gravitational collapse instead of avoiding it.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550025 ◽  
Author(s):  
João Marto ◽  
Yaser Tavakoli ◽  
Paulo Vargas Moniz

We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology (LQC), we analyze the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter γ, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case γ ~ 1, we find an interesting tracking behavior between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a nonsingular black hole is forming, at the corresponding collapse final stages.


2012 ◽  
Vol 44 (10) ◽  
pp. 2503-2520 ◽  
Author(s):  
Ranjan Sharma ◽  
Ramesh Tikekar

1986 ◽  
Vol 34 (4) ◽  
pp. 1011-1013 ◽  
Author(s):  
Sung-Won Kim
Keyword(s):  

1976 ◽  
Vol 31 (11) ◽  
pp. 1271-1276 ◽  
Author(s):  
M. Heller ◽  
M. Reinhardt

Abstract After a general classification of meaningless questions in science we concentrate on empirically meaningless questions. Introducing the concepts of informationally connected, semiconnected and disconnected observers, a formalism for the analysis of the informational structure of space-time is developed. We discuss some problems of epistemological nature in cosmology and blade hole physics. A number of questions like "What was 'before' the initial singularity of the universe?" or "What is the fate of matter in gravitational collapse inside the event horizon?" turn out to be empirically meaningless. We also show that a "wormhole" does not violate causality for the set of informationally connected observers who do not enter it.


1993 ◽  
Vol 08 (22) ◽  
pp. 2117-2123 ◽  
Author(s):  
T. INAGAKI ◽  
T. MUTA ◽  
S.D. ODINTSOV

The phase structure of Nambu-Jona-Lasinio model with N-component fermions in curved space-time is studied in the leading order of the 1/N expansion. The effective potential for composite operator [Formula: see text] is calculated by using the normal coordinate expansion in the Schwinger proper-time method. The existence of the first order phase transition caused by the change of the space-time curvature is confirmed and the dynamical mass of the fermion is calculated as a simultaneous function of the curvature and the four-fermion coupling constant. The phase diagram in the curvature and the coupling constant is obtained.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 707-715 ◽  
Author(s):  
S. G. GHOSH

We investigate the occurrence of naked singularities in the gravitational collapse of an inhomogeneous dust cloud in an expanding de Sitter background — a piece of Tolman–Bondi–de Sitter space–time. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and thus violate the cosmic censorship conjecture. Our result unambiguously support the fact that the asymptotic flatness of space–time is not a necessary ingredient for the development of naked singularities.


Sign in / Sign up

Export Citation Format

Share Document