relativistic astrophysics
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Michael Kramer

We experience a golden era in testing and exploring relativistic gravity. Whether it is results from gravitational-wave detectors, satellite or lab experiments, radio astronomy plays an important complementary role. Here, one can mention the cosmic microwave background, black hole imaging and, obviously, binary pulsars. This talk will concentrate on the latter and new results from studies of strongly self-gravitating bodies with unrivalled precision. This presentation compares the results to other methods, discusses implications for other areas of relativistic astrophysics and will give an outlook of what we can expect from new instruments in the near future.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Francesco De Paolis ◽  
Achille A. Nucita ◽  
Alexander F. Zakharov

Relativistic Astrophysics is the branch of astrophysics that studies astronomical phenomena and celestial bodies, for which classical mechanics and Newton’s law of gravitation are inapplicable to creation of suitable models and we have to generalize these approaches following general relativistic prescriptions [...]


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Anatol Cherepashchuk

SS433 is the first example of a microquasar discovered in the Galaxy. It is a natural laboratory for studies of extraordinarily interesting physical processes that are very important for the relativistic astrophysics, cosmic gas dynamics and theory of evolution of stars. The object has been studied for over 40 years in the optical, X-ray and radio bands. By now, it is generally accepted that SS433 is a massive eclipsing X-ray binary in an advanced stage of evolution in the supercritical regime of accretion on the relativistic object. Intensive spectral and photometric observations of SS433 at the Caucasian Mountain Observatory of the P. K. Sternberg Astronomical Institute of M. V. Lomonosov Moscow State University made it possible to find the ellipticity of the SS433 orbit and to discover an increase in the system’s orbital period. These results shed light on a number of unresolved issues related to SS433. In particular, a refined estimate of the mass ratio MxMv>0.8 was obtained (Mx and Mv are the masses of the relativistic object and optical star). Based on these estimates, the relativistic object in the SS433 system is the black hole; its mass is >8M⊙. The ellipticity of the orbit is consistent with the “slaved” accretion disc model. The results obtained made it possible to understand why SS433 evolves as the semi-detached binary instead of the common envelope system.


Author(s):  
César A. Zen Vasconcellos ◽  
Peter O. Hess ◽  
Gabriella Piccinelli ◽  
Mariana Vargas Magaña ◽  
Luis Ureña‐Lopez ◽  
...  

Author(s):  
César A. Zen Vasconcellos ◽  
Peter O. Hess ◽  
Gabriella Piccinelli ◽  
Mariana Vargas Magaña ◽  
Luis Arturo Ureña‐Lopez ◽  
...  

Author(s):  
K. Boshkayev ◽  
◽  
A. Malybayev ◽  
H. Quevedo ◽  
G. Nurbakyt ◽  
...  

The link between exterior solutions to the Einstein gravitational field equations such as the exact Erez-Rosen metric and approximate Hartle-Thorne metric is established here for the static case in the limit of linear mass quadrupole moment (Q) and second order terms in total mass (M). To this end, the Geroch-Hansen multipole moments are calculated for the Erez-Rosen and Hartle-Thorne solutions in order to find the relationship among the parameters of both metrics. The coordinate transformations are sought in a general form with two unknown functions in the corresponding limit of ~Q and ~M^2. By employing the perturbation theory, the approximate Erez-Rosen metric is written in the same coordinates as the Hartle-Thorne metric. By equating the radial and azimuthal components of the metric tensor of both solutions the sought functions are found in a straightforward way. It is shown that the approximation ~Q and ~M^2, which is used throughout the article, is physical and suitable for solving most problems of celestial mechanics in post-Newtonian physics. This approximation does not require the use of the Zipoy-Voorhees transformation, which is a necessary strict mathematical requirement in the ~Q approximation, i.e. when no other approximations are made. This implies that the explicit form of the coordinate transformations depends entirely on the approximation that is adopted in each particular case. The results obtained here are in agreement with the previous results in the literature and can be applied to different astrophysical goals. The paper pursues not only pure scientific, but also academic purposes and can be used as an auxiliary and additional material to the special courses of general theory of relativity, celestial mechanics and relativistic astrophysics.


2020 ◽  
Vol 35 (17) ◽  
pp. 2050078
Author(s):  
S. Z. Abbas ◽  
H. H. Shah ◽  
W. Chammam ◽  
H. Sun ◽  
Wasim Ul Haq ◽  
...  

The study of gravitational collapse is a very interesting phenomena in general relativistic astrophysics. Here, in this study we investigated the gravitational collapse of a spherically symmetric core of a star, constituted of dark matter (DM) ([Formula: see text]), in dark energy (DE) ([Formula: see text]) background. It was investigated that gravitational collapse of interacting and noninteracting combination of DM and DE yields BH formation. In this work, our main aim is to examine the effect of space–time curvature [Formula: see text] on the gravitational collapse of interacting and noninteracting combination of dark matter and DE. We achieve the visible influence of curvature on gravitational collapse analytically and interpret the results graphically.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941003 ◽  
Author(s):  
Alexander F. Zakharov

An active stage of relativistic astrophysics started in 1963 since in this year, quasars were discovered, Kerr solution had been found and the first Texas Symposium on Relativistic Astrophysics was organized in Dallas. Five years later, in 1967–1968 pulsars were discovered and their model as rotating neutron stars (NSs) had been proposed, meanwhile Wheeler claimed that Kerr and Schwarzschild vacuum solutions of Einstein equations provide an efficient approach for astronomical objects with different masses. Wheeler suggested to call these objects black holes. NSs were observed in different spectral band of electromagnetic radiation. In addition, a neutrino signal had been found for SN1987A. Therefore, multi-messenger astronomy demonstrated its efficiency for decades even before observations of the first gravitational radiation sources. However, usually, one has only manifestations of black holes in a weak gravitational field limit and sometimes a model with a black hole could be substituted with an alternative approach which very often looks much less natural, however, it is necessary to find observational evidences to reject such an alternative model. At the moment, only few astronomical signatures for strong gravitational field are found, including a shape of relativistic iron [Formula: see text] line, size and shape of shadows near black holes at the Galactic Center (GC) and M87, trajectories of bright stars near the GC. After two observational runs, the LIGO–Virgo collaboration provided a confirmation for a presence of mergers for 10 binary black holes and one binary NS system where gravitational wave signals were found. In addition, in the last years, a remarkable progress has been reached in a development of observational facilities to investigate a gravitational potential, for instance, the number of telescopes operating in the Event Horizon Telescope network is increasing and accuracy of a shadow reconstruction near the GC is improving, meanwhile largest VLT, Keck telescopes with adaptive optics and especially GRAVITY facilities observe bright IR stars at the GC with perfect accuracy. More options for precision observations of bright stars will be available with creating extremely large telescopes Thirty Meter Telescope (TMT) and E-ELT. It is clear that the GC (Sgr [Formula: see text]) is a specific object for observations. Our solar system is located at a distance around 8 kpc from the GC. Earlier, theorists proposed a number of different models including exotic ones for GC such as boson star, fermion ball, neutrino ball, a cluster of NSs. Later, some of these models were ruled out or essentially constrained with consequent observations and theoretical considerations. Currently, a supermassive black hole with mass around [Formula: see text] is the most natural model for GC. Using results of observations for trajectories of bright stars in paper [A. F. Zakharov, P. Jovanović, D. Borka and V. B. Jovanović, J. Cosmol. Astropart. Phys. 05 (2016) 045] the authors got a graviton mass constraint which is comparable and consistent with constraints obtained recently by the LIGO–Virgo collaboration. Later, we consider opportunities to improve current graviton mass constraints with future observations of bright stars [A. F. Zakharov, P. Jovanović, D. Borka and V. B. Jovanović, J. Cosmol. Astropart. Phys. 04 (2018) 050]. Similarly, from an analysis of bright star trajectories, one could constrain a tidal charge which was predicted by a gravity theory with an additional dimension [A. F. Zakharov, Eur. Phys. J. C 78 (2018) 689].


Author(s):  
Malcolm S. Longair

Although relativistic astrophysics began in the 1930s with study of supernovae and neutron stars, it was only three decades later that the discovery of extragalactic radio sources, quasars and pulsars marked the emergence of special and general relativity as essential tools of the high energy astrophysicist. X-ray and γ-ray astronomy provided many new insights, culminating in the discovery of γ-ray bursts at cosmological distances in 1997. Supermassive black holes in active galactic nuclei provided major new challenges for theorists and observers alike, revealing many remarkable relativistic phenomena, such as superluminal motions observed in some of the most active galaxies. Einstein’s prediction of gravitational waves of 1916 was substantiated exactly 100 years later with their discovery in coalescing binary black hole systems by the LIGO project. These remarkable discoveries, mostly in the non-optical wavebands, brought a wide range of physicists into the astronomical and cosmological communities.


Sign in / Sign up

Export Citation Format

Share Document