scholarly journals Equivariant K-theory and equivariant cohomology

2003 ◽  
Vol 243 (3) ◽  
pp. 423-448 ◽  
Author(s):  
Ioanid Rosu
2015 ◽  
Vol 58 (3) ◽  
pp. 649-676 ◽  
Author(s):  
NICOLAS RICKA

AbstractWe show that the$\mathbb{Z}$/2-equivariantnth integral MoravaK-theory with reality is self-dual with respect to equivariant Anderson duality. In particular, there is a universal coefficients exact sequence in integral Morava K-theory with reality, and we recover the self-duality of the spectrumKOas a corollary. The study of$\mathbb{Z}$/2-equivariant Anderson duality made in this paper gives a nice interpretation of some symmetries ofRO($\mathbb{Z}$/2)-graded (i.e. bigraded) equivariant cohomology groups in terms of Mackey functor duality.


Author(s):  
M. Rørdam ◽  
F. Larsen ◽  
N. Laustsen
Keyword(s):  

1973 ◽  
Vol 6 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Pramod K. Sharma ◽  
Jan R. Strooker
Keyword(s):  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


Author(s):  
Andrei Neguţ

Abstract We construct explicit elements $W_{ij}^k$ in (a completion of) the shifted quantum toroidal algebra of type $A$ and show that these elements act by 0 on the $K$-theory of moduli spaces of parabolic sheaves. We expect that the quotient of the shifted quantum toroidal algebra by the ideal generated by the elements $W_{ij}^k$ will be related to $q$-deformed $W$-algebras of type $A$ for arbitrary nilpotent, which would imply a $q$-deformed version of the Alday-Gaiotto-Tachikawa (AGT) correspondence between gauge theory with surface operators and conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document