scholarly journals Unexpected anti-hypertrophic responses to low-level stimulation of protease-activated receptors in adult rat cardiomyocytes

2014 ◽  
Vol 387 (10) ◽  
pp. 1001-1007
Author(s):  
Anke C. Fender ◽  
Goran Pavic ◽  
Grant R. Drummond ◽  
Gregory J. Dusting ◽  
Rebecca H. Ritchie
2009 ◽  
Vol 297 (2) ◽  
pp. H718-H725 ◽  
Author(s):  
Richard A. Fenton ◽  
Satoshi Komatsu ◽  
Mitsuo Ikebe ◽  
Lynne G. Shea ◽  
James G. Dobson

Adenosine protects the heart from adrenergic overstimulation. This adenoprotection includes the direct anti-adrenergic action via adenosine A1 receptors (A1R) on the adrenergic signaling pathway. An indirect A1R-induced attenuation of adrenergic responsiveness involves the translocation of PKC-ε to t-tubules and Z-line of cardiomyocytes. We investigated with sarcomere imaging, immunocytochemistry imaging, and coimmunoprecipitation (co-IP) whether A1R activation of PKC-ε induces the kinase translocation to receptor for activated C kinase 2 (RACK2) in isolated rat and mouse hearts and whether phospholipase C (PLC) is involved. Rat cardiomyocytes were treated with the A1R agonist chlorocyclopentyladenosine (CCPA) and exposed to primary PKC-ε and RACK2 antibodies with secondaries conjugated to Cy3 and Cy5 (indodicarbocyanine), respectively. Scanning confocal microscopy showed that CCPA caused PKC-ε to reversibly colocalize with RACK2 within 3 min. Additionally, rat and mouse hearts were perfused and stimulated with CCPA or phenylisopropyladenosine to activate A1R, or with phorbol 12-myristate 13-acetate to activate PKC. RACK2 was immunoprecipitated from heart extracts and resolved with SDS-PAGE. Western blotting showed that CCPA, phenylisopropyladenosine, and phorbol 12-myristate 13-acetate in the rat heart increased the PKC-ε co-IP with RACK2 by 186, 49, and >1,000%, respectively. The A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine prevented the CCPA-induced co-IP with RACK2. In mouse hearts, CCPA increased the co-IP of PKC-ε with RACK2 by 61%. With rat cardiomyocytes, the β-adrenergic agonist isoproterenol increased sarcomere shortening by 177%. CCPA reduced this response by 47%, an action inhibited by the PLC inhibitor U-73122 and 8-cyclopentyl-1,3-dipropylxanthine. In conclusion, A1R stimulation of the heart is associated with PLC-initiated PKC-ε translocation and association with RACK2.


1996 ◽  
Vol 318 (2) ◽  
pp. 723-728 ◽  
Author(s):  
Michel PUCEAT ◽  
Guy VASSORT

Phospholipase Cγ (PLCγ) expression and activation by a purinergic agonist were investigated in adult rat cardiomyocytes. PLCγ is expressed in isolated cardiomyocytes. Stimulation of cells with extracellular ATP induces a rapid increase in membrane-associated PLCγ immunoreactivity most probably due to redistribution of the lipase from the cytosol to the membrane. The purine triggers a significant phosphorylation on tyrosine residues of a cytosolic pool of PLCγ with a time course that correlates with that of translocation. Extracellular ATP also increases intracellular Ins(1,4,5)P3 content. All these events (translocation and phosphorylation of PLCγ, InsP3 formation) are blocked by genistein, a tyrosine kinase inhibitor. The purinergic effect on both PLCγ translocation and phosphorylation are Ca-sensitive. We thus propose that the purinergic stimulation activates a non-receptor tyrosine kinase that phosphorylates PLCγ in the presence of an increased Ca level and induces PLCγ redistribution to the membrane. There, PLCγ becomes activated leading to the hydrolysis of phosphatidylinositol diphosphate and in turn Ins(1,4,5)P3 formation. This cascade of events may play a significant role in the induction of arrhythmogenesis by purinergic agonists.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1064-1074 ◽  
Author(s):  
Christophe Montessuit ◽  
Irène Papageorgiou ◽  
René Lerch

Insulin resistance is the failure of insulin to stimulate the transport of glucose into its target cells. A highly regulatable supply of glucose is important for cardiomyocytes to cope with situations of metabolic stress. We recently observed that isolated adult rat cardiomyocytes become insulin resistant in vitro. Insulin resistance is combated at the whole body level with agonists of the nuclear receptor complex peroxisome proliferator-activated receptor γ (PPARγ)/retinoid X receptor (RXR). We investigated the effects of PPARγ/RXR agonists on the insulin-stimulated glucose transport and on insulin signaling in insulin-resistant adult rat cardiomyocytes. Treatment of cardiomyocytes with ciglitazone, a PPARγ agonist, or 9-cis retinoic acid (RA), a RXR agonist, increased insulin- and metabolic stress-stimulated glucose transport, whereas agonists of PPARα or PPARβ/δ had no effect. Stimulation of glucose transport in response to insulin requires the phosphorylation of the signaling intermediate Akt on the residues Thr308 and Ser473 and, downstream of Akt, AS160 on several Thr and Ser residues. Phosphorylation of Akt and AS160 in response to insulin was lower in insulin-resistant cardiomyocytes. However, treatment with 9-cis RA markedly increased phosphorylation of both proteins. Treatment with 9-cis RA also led to better preservation of microtubules in cultured cardiomyocytes. Disruption of microtubules in insulin-responsive cardiomyocytes abolished insulin-stimulated glucose transport and reduced phosphorylation of AS160 but not Akt. Metabolic stress-stimulated glucose transport also involved AS160 phosphorylation in a microtubule-dependent manner. Thus, the stimulation of glucose uptake in response to insulin or metabolic stress is dependent in cardiomyocytes on the presence of intact microtubules.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guixi Mo ◽  
Xin Liu ◽  
Yiyue Zhong ◽  
Jian Mo ◽  
Zhiyi Li ◽  
...  

AbstractIntracellular ion channel inositol 1,4,5-triphosphate receptor (IP3R1) releases Ca2+ from endoplasmic reticulum. The disturbance of IP3R1 is related to several neurodegenerative diseases. This study investigated the mechanism of IP3R1 in myocardial ischemia/reperfusion (MI/R). After MI/R modeling, IP3R1 expression was silenced in myocardium of MI/R rats to explore its role in the concentration of myocardial enzymes, infarct area, Ca2+ level, NLRP3/Caspase-1, and pyroptosis markers and inflammatory factors. The adult rat cardiomyocytes were isolated and cultured to establish hypoxia/reperfusion (H/R) cell model. The expression of IP3R1 was downregulated or ERP44 was overexpressed in H/R-induced cells. Nifedipine D6 was added to H/R-induced cells to block Ca2+ channel or Nigericin was added to activate NLRP3. IP3R1 was highly expressed in myocardium of MI/R rats, and silencing IP3R1 alleviated MI/R injury, reduced Ca2+ overload, inflammation and pyroptosis in MI/R rats, and H/R-induced cells. The binding of ERP44 to IP3R1 inhibited Ca2+ overload, alleviated cardiomyocyte inflammation, and pyroptosis. The increase of intracellular Ca2+ level caused H/R-induced cardiomyocyte pyroptosis through the NLRP3/Caspase-1 pathway. Activation of NLRP3 pathway reversed the protection of IP3R1 inhibition/ERP44 overexpression/Nifedipine D6 on H/R-induced cells. Overall, ERP44 binding to IP3R1 inhibits Ca2+ overload, thus alleviating pyroptosis and MI/R injury.


Sign in / Sign up

Export Citation Format

Share Document