scholarly journals Bulk-surface virtual element method for systems of PDEs in two-space dimensions

2021 ◽  
Vol 147 (2) ◽  
pp. 305-348
Author(s):  
Massimo Frittelli ◽  
Anotida Madzvamuse ◽  
Ivonne Sgura

AbstractIn this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method (Beirão Da Veiga et al. in Math Models Methods Appl Sci 23(01):199–214, 2013. https://doi.org/10.1051/m2an/2013138) in the bulk domain to a surface finite element method (Dziuk and Elliott in Acta Numer 22:289–396, 2013. https://doi.org/10.1017/s0962492913000056) on the surface. The proposed method, which we coin the bulk-surface virtual element method includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes (Madzvamuse and Chung in Finite Elem Anal Des 108:9–21, 2016. https://doi.org/10.1016/j.finel.2015.09.002). The method exhibits second-order convergence in space, provided the exact solution is $$H^{2+1/4}$$ H 2 + 1 / 4 in the bulk and $$H^2$$ H 2 on the surface, where the additional $$\frac{1}{4}$$ 1 4 is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an $$L^2$$ L 2 -preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator (Elliott and Ranner in IMA J Num Anal 33(2):377–402, 2013. https://doi.org/10.1093/imanum/drs022) for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes (Madzvamuse and Chung 2016). Three numerical examples illustrate our findings.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gianmarco Manzini ◽  
Annamaria Mazzia

<p style='text-indent:20px;'>The Virtual Element Method (VEM) is a Galerkin approximation method that extends the Finite Element Method (FEM) to polytopal meshes. In this paper, we present a conforming formulation that generalizes the Scott-Vogelius finite element method for the numerical approximation of the Stokes problem to polygonal meshes in the framework of the virtual element method. In particular, we consider a straightforward application of the virtual element approximation space for scalar elliptic problems to the vector case and approximate the pressure variable through discontinuous polynomials. We assess the effectiveness of the numerical approximation by investigating the convergence on a manufactured solution problem and a set of representative polygonal meshes. We numerically show that this formulation is convergent with optimal convergence rates except for the lowest-order case on triangular meshes, where the method coincides with the <inline-formula><tex-math id="M1">\begin{document}$ {\mathbb{P}}_{{1}}-{\mathbb{P}}_{{0}} $\end{document}</tex-math></inline-formula> Scott-Vogelius scheme, and on square meshes, which are situations that are well-known to be unstable.</p>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


Sign in / Sign up

Export Citation Format

Share Document