scholarly journals Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device

2019 ◽  
Vol 411 (24) ◽  
pp. 6435-6447 ◽  
Author(s):  
Menglian Zhou ◽  
Ruchi Sharma ◽  
Hongbo Zhu ◽  
Ziqi Li ◽  
Jiliang Li ◽  
...  
2019 ◽  
Author(s):  
Menglian Zhou ◽  
Ruchi Sharma ◽  
Hongbo Zhu ◽  
Jiliang Li ◽  
Shiyu Wang ◽  
...  

AbstractAcute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury, responsible for high mortality and long-term morbidity. As a dynamic syndrome with multiple etiologies its timely diagnosis is difficult as is tracking the course of the syndrome. Therefore, there is a significant need for early, rapid detection and diagnosis as well as clinical trajectory monitoring of ARDS. Here we report our work on using human breath to differentiate ARDS and non-ARDS causes of respiratory failure. A fully automated portable 2-dimensional gas chromatography device with high peak capacity, high sensitivity, and rapid analysis capability was designed and made in-house for on-site analysis of patients’ breath. A total of 85 breath samples from 48 ARDS patients and controls were collected. Ninety-seven elution peaks were separated and detected in 13 minutes. An algorithm based on machine learning, principal component analysis (PCA), and linear discriminant analysis (LDA) was developed. As compared to the adjudications done by physicians based on the Berlin criteria, our device and algorithm achieved an overall accuracy of 87.1% with 94.1% positive predictive value and 82.4% negative predictive value. The high overall accuracy and high positive predicative value suggest that the breath analysis method can accurately diagnose ARDS. The ability to continuously and non-invasively monitor exhaled breath for early diagnosis, disease trajectory tracking, and outcome prediction monitoring of ARDS may have a significant impact on changing practice and improving patient outcomes.


2021 ◽  
pp. 00154-2021
Author(s):  
Ruchi Sharma ◽  
Menglian Zhou ◽  
Mohamad Hakam Tiba ◽  
Brendan M. McCracken ◽  
Robert P. Dickson ◽  
...  

Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is ill-defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced utilising both direct and indirect lung injury. An automated portable gas chromatography device developed in-house was used for point of care breath analysis and to monitor swine breath hourly, starting from the initiation of the experiment until the development of ARDS, which was adjudicated based on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the experiment. A total of 67 breath samples (chromatograms) were collected and analyzed. Through machine learning, principal component analysis, and linear discrimination analysis, seven VOCs biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers found in our breath analysis study of human ARDS corroborating our findings. We also demonstrated that breath analysis detects changes 1–6 h earlier than the clinical adjudication based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used for the identification of early changes associated with ARDS pathogenesis in swine. Its clinical application could provide intensive care clinicians with a non-invasive diagnostic tool for early detection and continuous monitoring of ARDS.


2020 ◽  
Vol 49 (10) ◽  
pp. 418-421
Author(s):  
Christopher Werlein ◽  
Peter Braubach ◽  
Vincent Schmidt ◽  
Nicolas J. Dickgreber ◽  
Bruno Märkl ◽  
...  

ZUSAMMENFASSUNGDie aktuelle COVID-19-Pandemie verzeichnet mittlerweile über 18 Millionen Erkrankte und 680 000 Todesfälle weltweit. Für die hohe Variabilität sowohl der Schweregrade des klinischen Verlaufs als auch der Organmanifestationen fanden sich zunächst keine pathophysiologisch zufriedenstellenden Erklärungen. Bei schweren Krankheitsverläufen steht in der Regel eine pulmonale Symptomatik im Vordergrund, meist unter dem Bild eines „acute respiratory distress syndrome“ (ARDS). Darüber hinaus zeigen sich jedoch in unterschiedlicher Häufigkeit Organmanifestationen in Haut, Herz, Nieren, Gehirn und anderen viszeralen Organen, die v. a. durch eine Perfusionsstörung durch direkte oder indirekte Gefäßwandschädigung zu erklären sind. Daher wird COVID-19 als vaskuläre Multisystemerkrankung aufgefasst. Vor dem Hintergrund der multiplen Organmanifestationen sind klinisch-pathologische Obduktionen eine wichtige Grundlage der Entschlüsselung der Pathomechanismen von COVID-19 und auch ein Instrument zur Generierung und Hinterfragung innovativer Therapieansätze.


Sign in / Sign up

Export Citation Format

Share Document