Evaluating the biochemical changes of LPS-stimulated endothelial cells by synchrotron FTIR microspectroscopy at a single-cell level

2019 ◽  
Vol 411 (27) ◽  
pp. 7157-7164 ◽  
Author(s):  
Yue Wang ◽  
Yadi Wang ◽  
Lina Huang ◽  
Xiangyong Liu ◽  
Jun Hu ◽  
...  
2021 ◽  
pp. 276-314
Author(s):  
Elena Locci ◽  
Silvia Raymond

Understanding cellular metabolism (how cells use energy) can be key in treating a wide range of diseases, including vascular disease and cancer. Although many techniques can measure these processes in tens of thousands of cells, researchers have not been able to measure them at the single-cell level. Researchers have used a genetically encoded biosensor with artificial intelligence to measure glycolysis. (Process of converting glucose to energy, single endothelial cells, blood vessel cells). Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2004 ◽  
Vol 287 (2) ◽  
pp. C345-C356 ◽  
Author(s):  
Brian J. Wisnoskey ◽  
Mark Estacion ◽  
William P. Schilling

The maitotoxin (MTX)-induced cell death cascade in bovine aortic endothelial cells (BAECs), a model for Ca2+ overload-induced toxicity, reflects three sequential changes in plasmalemmal permeability. MTX initially activates Ca2+-permeable, nonselective cation channels (CaNSC) and causes a massive increase in cytosolic free Ca2+ concentration ([Ca2+]i). This is followed by the opening of large endogenous cytolytic/oncotic pores (COP) that allow molecules <800 Da to enter the cell. The cells then lyse not by rupture of the plasmalemma but through the activation of a “death” channel that lets large proteins (e.g., 140–160 kDa) leave the cell. These changes in permeability are accompanied by the formation of membrane blebs. In this study, we took advantage of the well-known differences in affinity of various Ca2+-binding proteins for Ca2+ and Sr2+ vs. Ba2+ to probe their involvement in each phase of the cell death cascade. Using fluorescence techniques at the cell population level (cuvette-based) and at the single-cell level (time-lapse videomicroscopy), we found that the replacement of Ca2+ with either Sr2+ or Ba2+ delayed both MTX-induced activation of COP, as indicated by the uptake of ethidium bromide, and subsequent cell lysis, as indicated by the uptake of propidium iodide or the release of cell-associated green fluorescent protein. MTX-induced responses were mimicked by ionomycin and were significantly delayed in BAPTA-loaded cells. Experiments at the single-cell level revealed that Ba2+ not only delayed the time to cell lysis but also caused desynchronization of the lytic phase. Last, membrane blebs, which were numerous and spherical in Ca2+-containing solutions, were poorly defined and greatly reduced in number in the presence of Ba2+. Taken together, these results suggest that intracellular high-affinity Ca2+-binding proteins are involved in the MTX-induced changes in plasmalemmal permeability that are responsible for cell demise.


2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5384-5392
Author(s):  
Abd Alaziz Abu Quba ◽  
Gabriele E. Schaumann ◽  
Mariam Karagulyan ◽  
Doerte Diehl

Setup for a reliable cell-mineral interaction at the single-cell level, (a) study of the mineral by a sharp tip, (b) study of the bacterial modified probe by a characterizer, (c) cell-mineral interaction, (d) subsequent check of the modified probe.


Sign in / Sign up

Export Citation Format

Share Document