glycolysis process
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
pp. 261-300
Author(s):  
Ricardo Gobato ◽  
Abhijit Mitra

Understanding cellular metabolism (how cells use energy) can be key in treating a wide range of diseases, including vascular disease and cancer. Although many techniques can measure these processes in tens of thousands of cells, researchers have not been able to measure them at the single-cell level. Researchers have used a genetically encoded biosensor with artificial intelligence to measure glycolysis. (Process of converting glucose to energy, single endothelial cells, blood vessel cells). Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management


2021 ◽  
pp. 276-314
Author(s):  
Elena Locci ◽  
Silvia Raymond

Understanding cellular metabolism (how cells use energy) can be key in treating a wide range of diseases, including vascular disease and cancer. Although many techniques can measure these processes in tens of thousands of cells, researchers have not been able to measure them at the single-cell level. Researchers have used a genetically encoded biosensor with artificial intelligence to measure glycolysis. (Process of converting glucose to energy, single endothelial cells, blood vessel cells). Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2021 ◽  
Vol 11 ◽  
Author(s):  
Chang Liu ◽  
Ying Jin ◽  
Zhimin Fan

Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.


2021 ◽  
Vol 17 (9) ◽  
pp. 1806-1811
Author(s):  
Xiangling Ren ◽  
Meijia Liu ◽  
Ming Tang ◽  
Longfei Tan ◽  
Changhui Fu ◽  
...  

Lactate dehydrogenase (LDH) is one of key enzymes in glucose metabolism pathway, which plays a critical role in cell metabolism. Inhibition of LDH can inhibit glycolysis process, thereby inhibiting the occurrence and development of tumor cells. Two kinds of LDH inhibitors, apigenin and emodin, were obtained by testing the IC50 of several natural products in LDH enzyme reaction. The IC50 of apigenin was about 1/3 of LDH inhibitor sodium oxalate. A new method to evaluate the performance of LDH inhibitors based on CdTe QDs was established at the same time, which provides a new idea for research on LDH enzyme inhibitors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Zhao ◽  
Bin Zhao ◽  
Wei-Hua Yan ◽  
Yan Xia ◽  
Zhi-Hui Wang ◽  
...  

BackgroundBladder cancer is the 10th most common cancer and most common urothelial malignancy worldwide. Prognostic biomarkers for bladder cancer patients are required for individualized treatment. Monocarboxylate transporter 4 (MCT4), encoded by SLC16A3 gene, is a potential biomarker for bladder cancer because of its crucial role in the lactate efflux in the aerobic glycolysis process. We aimed to study the association between MCT4 expression and the overall survival (OS) of bladder cancer patients.MethodsThe published single-cell RNA sequencing data of 49,869 bladder cancer cells and 15,827 normal bladder mucosa cells and The Cancer Genome Atlas (TCGA) bladder cancer cohort data were used to explore the mRNA expression of SLC16A3 in bladder cancer. Eighty-nine consecutive bladder cancer patients who had undergone radical cystectomy were enrolled as a validation cohort. The expression of MCT4 proteins in bladder cancer specimens was detected using immunohistochemistry staining. The Kaplan–Meier survival analysis and Cox regression were performed to analyze the association between MCT4 protein expression and OS in bladder cancer patients.ResultsSLC16A3 mRNA was upregulated in bladder cancer cells. The upregulated genes in SLC16A3-positive epithelial cells were enriched in the glycolysis process pathway and monocarboxylic acid metabolic process pathway. Patients with high SLC16A3 mRNA expression showed significantly poor OS (p = 0.016). High MCT4 protein expression was also found to be an independent predictor for poor OS in bladder cancer patients (HR: 2.462; 95% CI: 1.202~5.042, p = 0.014). A nomogram was built based on the results of the multivariate Cox analysis.ConclusionBladder cancer with high SLC16A3 mRNA expression has a poor OS. High MCT4 protein expression is an independent prognostic factor for bladder cancer patients who had undergone radical cystectomy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuping Chen ◽  
Jing Chen ◽  
Anmei Shu ◽  
Liping Liu ◽  
Qin Wu ◽  
...  

Radix Rehmanniae and Cornus Officinalis (RR-CO) have been widely used as “nourishing Yin and tonifying kidney” herb pairs for the treatment of diabetes mellitus (DM) and its complications in traditional Chinese medicine (TCM). Based on the theory of “kidney governing reproduction” in TCM, the aim of this study was to investigate the therapeutic effects of RR-CO on DM-induced reproduction damage through regulating testicular glycolysis. Moreover, the regulation of AGEs/RAGE/HIF-1α axis on the testicular glycolysis process has also been studied. Spontaneous DM model KK-Ay mice were used to investigate the protective effect of RR, CO, RR-CO on DM-induced reproductive disturbances. RR, CO, RR-CO improved DM-induced renal and testicular morphology damages. Moreover, the impaired spermatogenesis, germ cell apoptosis and motility in testis induced upon DM were also attenuated by RR, CO or RR-CO, accompanied by an increased level of glycolysis metabolomics such as l-lactate, d-Fructose 1,6-bisphosphate, etc. Meanwhile, glucose membrane transporters (GLUT1, GLUT3), monocarboxylate transporter 4 (MCT4) expression, lactate dehydrogenase (LDH) activity, HIF-1α were upregulated by RR, CO and RR-CO treatment compared with the model group, whereas AGE level and RAGE expression were decreased with the drug administration. The RR-CO group was associated with superior protective effects in comparison to RR, CO use only. Aminoguanidine (Ami) and FPS-ZM1, the AGEs and RAGE inhibitors, were used as a tool drug to study the mechanism, showing different degrees of protection against DM-induced reproductive damage. This work preliminarily sheds light on the herb pair RR-CO exhibited favorable effects against DM-induced reproductive disturbances through enhancing testicular glycolysis, which might be mediated by AGEs/RAGE/HIF-1α axis.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1533 ◽  
Author(s):  
Gabriel Kiss ◽  
Gerlinde Rusu ◽  
Francisc Peter ◽  
Ionuț Tănase ◽  
Geza Bandur

Ester polyurethane (PU) foam waste was reacted at atmospheric pressure in an autoclave and using microwaves with diethylene glycol (DEG) at different PU/DEG ratios in the presence of diethanolamine as a catalyst to find the glycolysis conditions that allow for the improved recovery of the PU foam waste and enable the recycling of the whole glycolysis product in foam formulations suitable for industrial application. The recycled polyol was characterized by dynamic viscosity, hydroxyl number, water content, and density, while thermal stability was assessed using thermogravimetric analysis. In the PU foam formulation, 1% and 5% of the glycolyzed material was reused. The relationship between the reuse level of the recycled polyol and the physical properties of the foam was thoroughly investigated. It was observed that both hardness and air flow decreased with increasing recycled polyol content, particularly for the polyester type foam, while tensile strength and compression strength increased. Depending on the amount of recycled polyol and catalyst used, polyether-based foams could be obtained with a low air permeability, needed in special applications as sealed foams, or with higher air permeability desirable for comfort PU foams. The results open the way for further optimization studies of industrial polyurethane foam formulations using a glycolysis process without any separation stage.


2019 ◽  
Vol 33 (11) ◽  
pp. 11640-11654 ◽  
Author(s):  
Juan Li ◽  
Tongxin Wang ◽  
Jun Xia ◽  
Weilei Yao ◽  
Feiruo Huang

2018 ◽  
Vol 19 (12) ◽  
pp. 3897 ◽  
Author(s):  
Xi Chen ◽  
Bingxian Yang ◽  
Wei Huang ◽  
Tantan Wang ◽  
Yaohan Li ◽  
...  

Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.


Author(s):  
Katarzyna WOŹNIAK ◽  
◽  
Agnieszka KORPAL ◽  
Arkadiusz TERMAN ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document