Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters

2020 ◽  
Vol 412 (12) ◽  
pp. 2903-2914 ◽  
Author(s):  
Wei Jiang ◽  
Yaling Ren ◽  
Xiangan Han ◽  
Junxin Xue ◽  
Tongling Shan ◽  
...  
Author(s):  
Kai Chen ◽  
Biao Ma ◽  
Jiali Li ◽  
Erjing Chen ◽  
Ying Xu ◽  
...  

Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.


2018 ◽  
Vol 41 (8) ◽  
pp. 1201-1206 ◽  
Author(s):  
H Wang ◽  
M Sun ◽  
D Xu ◽  
P Podok ◽  
J Xie ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Changfeng Li ◽  
Yuliang Ju ◽  
Xun Wu ◽  
Pengfei Shen ◽  
Le Cao ◽  
...  

Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that results in severe losses to tobacco (Nicotiana tabacum) production in China. In this study, a novel RPA-LFD assay for the rapid visual detection of R. solanacearum was established using recombinase polymerase amplification (RPA) and lateral-flow dipstick (LFD). The RPA-LFD assay was performed at 37°C in 30 min without complex equipment. Targeting the sequence of the RipTALI-9 gene, we designed RPA primers (Rs-rpa-F/R) and an LF probe (Rs-LF-probe) that showed high specificity to R. solanacearum. The sensitivity of RPA-LFD assay to R. solanacearum was the same as that in conventional PCR at 1 pg genomic DNA, 102 CFU/g artificially inoculated tobacco stem, and 103 CFU/g artificially inoculated soil. The RPA-LFD assay could also detect R. solanacearum from plant and soil samples collected from naturally infested tobacco fields. These results suggest that the RPA-LFD assay developed in this study is a rapid, accurate molecular diagnostic tool with high sensitivity for the detection of R. solanacearum.


2020 ◽  
Vol 311 ◽  
pp. 127903 ◽  
Author(s):  
Xiaohan Yang ◽  
Jia Xie ◽  
Siqi Hu ◽  
Wenli Zhan ◽  
Lei Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document