scholarly journals A biomimetic enzyme-linked immunosorbent assay (BELISA) for the analysis of gonadorelin by using molecularly imprinted polymer-coated microplates

Author(s):  
Francesca Torrini ◽  
Laura Caponi ◽  
Andrea Bertolini ◽  
Pasquale Palladino ◽  
Francesca Cipolli ◽  
...  

AbstractAn original biomimetic enzyme-linked immunoassay (BELISA) to target the small peptide hormone gonadorelin is presented. This peptide has been recently listed among the substances banned in sports by the World Antidoping Agency (WADA) since its misuse by male athletes triggers testosterone increase. Hence, in response to this emerging issue in anti-doping controls, we proposed BELISA which involves the growth of a polynorepinephrine (PNE)–based molecularly imprinted polymer (MIP) directly on microwells. PNE, a polydopamine (PDA) analog, has recently displayed impressive performances when it was exploited for MIP preparation, giving even better results than PDA. Gonadorelin quantification was accomplished via a colorimetric indirect competitive bioassay involving the competition between biotinylated gonadorelin linked to the signal reporter and the unlabeled analyte. These compete for the same MIP binding sites resulting in an inverse correlation between gonadorelin concentration and the output color signal (λ = 450 nm). A detection limit of 277 pmol L−1 was achieved with very good reproducibility in standard solutions (avCV% = 4.07%) and in urine samples (avCV% = 5.24%). The selectivity of the assay resulted adequate for biological specimens and non-specific control peptides. In addition, the analytical figures of merit were successfully validated by mass spectrometry, the reference anti-doping benchtop platform for the analyte. BELISA was aimed to open real perspectives for PNE-based MIPs as alternatives to antibodies, especially when the target analyte is a poorly or non-immunogenic small molecule, such as gonadorelin. Graphical abstract

2014 ◽  
Vol 605 ◽  
pp. 67-70 ◽  
Author(s):  
Mohsen Rahiminezhad ◽  
Seyed Jamaleddin Shahtaheri ◽  
Mohammad Reza Ganjali ◽  
Abbas Rahimi Rahimi Forushani

Molecular imprinting technology has become an interesting research area to the preparation of specific sorbent material for environmental and occupational sample preparation techniques (1). In the molecular imprinting technology, specific binding sites have been formed in polymeric matrix, which often have an affinity and selectivity similar to antibody-antigen systems (2). In molecular imprinted technology, functional monomers are arranged in a complementary configuration around a template molecule, then, cross-linker and solvent are also added and the mixture is treated to give a porous material containing nono-sized binding sites. After extraction of the template molecule by washing, vacant imprinted sites will be left in polymer, which are available for rebinding of the template or its structural analogue (3). The stability, convention of preparation and low cost of these materials make them particularly attractive (4). These synthetic materials have been used for capillary electrochromatography (5), chromatography columns (6), sensors (7), and catalyze system (8). Depending on the molecular imprinting approach, different experimental variables such as the type and amounts of functional monomers, porogenic solvent, initiator, monomer to cross-linker ratio, temperature, and etc may alter the properties of the final polymeric materials. In this work, chemometric approach based on Central Composite Design (CCD) was used to design the experiments as well as to find the optimum conditions for preparing appropriate diazinon molecularly imprinted polymer.


2019 ◽  
Vol 11 (17) ◽  
pp. 2320-2326 ◽  
Author(s):  
Giulia Spano ◽  
Simone Cavalera ◽  
Fabio Di Nardo ◽  
Cristina Giovannoli ◽  
Laura Anfossi ◽  
...  

A molecularly imprinted sorbent assays for cortisol was optimized for direct determination in human saliva.


2013 ◽  
Vol 5 (17) ◽  
pp. 8537-8545 ◽  
Author(s):  
Tibor Renkecz ◽  
Günter Mistlberger ◽  
Marcin Pawlak ◽  
Viola Horváth ◽  
Eric Bakker

2006 ◽  
Vol 951 ◽  
Author(s):  
Kyung Choi

ABSTRACTWe present functional patterns fabricated using functional polymers. The functional polymer is MIP (molecularly imprinted polymer) system, which can be produced through “molecular imprinting” to create “synthetic receptor or binding sites” for bio/chemical detection technology. Those binding sites have specific molecular recognition functions for targeting organic or bio molecules. MIP's patterns in the micro-scale were fabricated for chemical sensors, diagonostic bio-sensors, and for drug delivery systems. We also obtained homogeneous MIP's micro-particles, which have high affinity receptor sites only using a microfluidic reactor.


2010 ◽  
Vol 1260 ◽  
Author(s):  
Kyung Choi

AbstractIn this study, we introduce ‘molecularly imprinted polymer' (MIP) system, which has receptor or binding sites with specific molecular recognitions.Due to the receptor or binding sites in MIP's systems, it can be used for developing bio- or chemical sensors.To fabricate bio-sensors, bio-molecules have been incorporated into MIP's systems as template molecules, but some bio-molecules are sensitive thus denatured during engineering processes.For this reason, bio-sensor fabrications by conventional UV photolithography have shown some limitations.We demonstrate here a photopatterning process, a micromolding in capillary technique (MIMIC) technique, to photopatterning a MIP's system containing a bio-molecule template.The MIMIC technique uses the photo-masks for photopolymerizing MIP's monomer solutions.The photomask is based on silicon rubbers, which are optically transparent and also minimize any damages of sensitive bio-molecules during photo-polymerizations. For visualizing lithographic performances of MIP's systems, we used a fluorescent template molecule to present a comparative result of MIP's photo-cured patterns.It shows a clear different in MIP's patterns with and without the template.We also employed a microfluidic approach to produce micro-sized MIP's particles, which contribute to increase the sensitivity of bio-molecule sensors/devices.


Sign in / Sign up

Export Citation Format

Share Document