scholarly journals Rigorous Asymptotics of a KdV Soliton Gas

Author(s):  
M. Girotti ◽  
T. Grava ◽  
R. Jenkins ◽  
K. D. T.-R. McLaughlin

AbstractWe analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit $$N\rightarrow + \infty $$ N → + ∞ of a gas of N-solitons. We show that this gas of solitons in the limit $$N\rightarrow \infty $$ N → ∞ is slowly approaching a cnoidal wave solution for $$x \rightarrow - \infty $$ x → - ∞ up to terms of order $$\mathcal {O} (1/x)$$ O ( 1 / x ) , while approaching zero exponentially fast for $$x\rightarrow +\infty $$ x → + ∞ . We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions.

2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 573 ◽  
Author(s):  
Wen-Xiu Ma

We present an application of the nonlinear steepest descent method to a three-component coupled mKdV system associated with a 4 × 4 matrix spectral problem. An integrable coupled mKdV hierarchy with three potentials is first generated. Based on the corresponding oscillatory Riemann-Hilbert problem, the leading asympototics of the three-component mKdV system is then evaluated by using the nonlinear steepest descent method.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yali Shen ◽  
Ruoxia Yao

In this paper, the polynomial solutions in terms of Jacobi’s elliptic functions of the KdV equation with a self-consistent source (KdV-SCS) are presented. The extended (G′/G)-expansion method is utilized to obtain exact traveling wave solutions of the KdV-SCS, which finally are expressed in terms of the hyperbolic function, the trigonometric function, and the rational function. Meanwhile we find the Lie point symmetry and Lie symmetry group and give several group-invariant solutions for the KdV-SCS. Finally, we supplement the results of the Painlevé property in our previous work and get the Bäcklund transformations of the KdV-SCS.


Plasma ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 408-425
Author(s):  
Shatadru Chaudhuri ◽  
Asesh Roy Chowdhury

As strongly coupled quantum dusty plasma consisting of electrons and dust with the ions in the background is considered when there is a streaming of electrons. It is observed that the streaming gives rise to both the slow and fast modes of propagation. The nonlinear mode is then analyzed by the reductive perturbation approach, resulting in the KdV-equation. In the critical situation where non-linearity vanishes, the modified scaling results in the MKdV equation. It is observed that both the KdV and MKdV equations possess quasi-solitary wave solution, which not only has the character of a soliton but also has a periodic nature. Such type of solitons are nowadays called nanopteron solitons and are expressed in terms of cnoidal-type elliptic functions.


Sign in / Sign up

Export Citation Format

Share Document