scholarly journals Solutions and Painlevé Property for the KdV Equation with Self-Consistent Source

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yali Shen ◽  
Ruoxia Yao

In this paper, the polynomial solutions in terms of Jacobi’s elliptic functions of the KdV equation with a self-consistent source (KdV-SCS) are presented. The extended (G′/G)-expansion method is utilized to obtain exact traveling wave solutions of the KdV-SCS, which finally are expressed in terms of the hyperbolic function, the trigonometric function, and the rational function. Meanwhile we find the Lie point symmetry and Lie symmetry group and give several group-invariant solutions for the KdV-SCS. Finally, we supplement the results of the Painlevé property in our previous work and get the Bäcklund transformations of the KdV-SCS.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yali Shen ◽  
Fengqin Zhang ◽  
Xiaomei Feng

The Painlevé property and Bäcklund transformation for the KdV equation with a self-consistent source are presented. By testing the equation, it is shown that the equation has the Painlevé property. In order to further prove its integrality, we give its bilinear form and construct its bilinear Bäcklund transformation by the Hirota's bilinear operator. And then the soliton solution of the equation is obtained, based on the proposed bilinear form.


2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yinghui He ◽  
Yun-Mei Zhao ◽  
Yao Long

The F-expansion method is used to find traveling wave solutions to various wave equations. By giving more solutions of the general subequation, an extended F-expansion method is introduced by Emmanuel. In our work, a generalized KdV type equation of neglecting the highest-order infinitesimal term, which is an important water wave model, is discussed by using the extended F-expansion method. And when the parameters satisfy certain relations, some new exact solutions expressed by Jacobi elliptic function, hyperbolic function, and trigonometric function are obtained. The related results are enriched.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhao Li ◽  
Tianyong Han

In this study, the exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation with the Kerr law and dual-power law nonlinearity are studied. The nonlinear fractional partial differential equations are converted to a nonlinear ordinary differential equation via a traveling wave transformation in the sense of conformable fractional derivatives. A range of solutions, which include hyperbolic function solutions, trigonometric function solutions, and rational function solutions, is derived by utilizing the new extended G ′ / G -expansion method. By selecting appropriate parameters of the solutions, numerical simulations are presented to explain further the propagation of optical pulses in optic fibers.


2020 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
Nur Hasan Mahmud Shahen ◽  
Foyjonnesa . ◽  
Md. Habibul Bashar

In this paper, the -expansion method has been applied to find the new exact traveling wave solutions of the nonlinear evaluation equations (NLEEs) by utilizing 3rd-order Klein–Gordon Equation (KFGE). With the collaboration of symbolic commercial software maple, the competence of this method for inventing these exact solutions has been more exhibited. As an upshot, some new exact solutions are obtained and signified by hyperbolic function solutions, different combinations of trigonometric function solutions, and exponential function solutions. Moreover, the -expansion method is a more efficient method for exploring essential nonlinear waves that enrich a variety of dynamic models that arises in nonlinear fields. All sketching is given out to show the properties of the innovative explicit analytic solutions. Our proposed method is directed, succinct, and reasonably good for the various nonlinear evaluation equations (NLEEs) related treatment and mathematical physics also. 


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


2019 ◽  
Vol 35 (01) ◽  
pp. 1950339
Author(s):  
Zhenli Wang ◽  
Chuan Zhong Li ◽  
Lihua Zhang

In this paper, by applying the direct symmetry method, we obtain the symmetry reductions, group invariant solutions and some new exact solutions of the Bogoyavlenskii equation, which include hyperbolic function solutions, trigonometric function solutions and power series solutions. We also give the conservation laws of the Bogoyavlenskii equation.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1012
Author(s):  
Innocent Simbanefayi ◽  
Chaudry Masood Khalique

In this work, we investigate a (3+1)-dimensional generalised Kadomtsev–Petviashvili equation, recently introduced in the literature. We determine its group invariant solutions by employing Lie symmetry methods and obtain elliptic, rational and logarithmic solutions. The solutions derived in this paper are the most general since they contain elliptic functions. Finally, we derive the conserved quantities of this equation by employing two approaches—the general multiplier approach and Ibragimov’s theorem. The importance of conservation laws is explained in the introduction. It should be pointed out that the investigation of higher dimensional nonlinear partial differential equations is vital to our perception of the real world since they are more realistic models of natural and man-made phenomena.


1996 ◽  
Vol 74 (9-10) ◽  
pp. 676-684 ◽  
Author(s):  
F. Güngör ◽  
M. Sanielevici ◽  
P. Winternitz

All variable coefficient Korteweg – de Vries (KdV) equations with three-dimensional Lie point symmetry groups are investigated. For such an equation to have the Painlevé property, its coefficients must satisfy seven independent partial differential equations. All of them are satisfied only for equations equivalent to the KdV equation itself. However, most of them are satisfied in all cases. If the symmetry algebra is either simple, or nilpotent, then the equations have families of single-valued solutions depending on two arbitrary functions of time. Symmetry reduction is used to obtain particular solutions. The reduced ordinary differential equations are classified.


Author(s):  
M. Girotti ◽  
T. Grava ◽  
R. Jenkins ◽  
K. D. T.-R. McLaughlin

AbstractWe analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit $$N\rightarrow + \infty $$ N → + ∞ of a gas of N-solitons. We show that this gas of solitons in the limit $$N\rightarrow \infty $$ N → ∞ is slowly approaching a cnoidal wave solution for $$x \rightarrow - \infty $$ x → - ∞ up to terms of order $$\mathcal {O} (1/x)$$ O ( 1 / x ) , while approaching zero exponentially fast for $$x\rightarrow +\infty $$ x → + ∞ . We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions.


Sign in / Sign up

Export Citation Format

Share Document