Monocular learning of a spatial task enhances sleep in the right hemisphere of domestic chicks (Gallus gallus)

2012 ◽  
Vol 218 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Cristian Nelini ◽  
Daniela Bobbo ◽  
Gian G. Mascetti
2010 ◽  
Vol 6 (3) ◽  
pp. 290-292 ◽  
Author(s):  
Rosa Rugani ◽  
Debbie M. Kelly ◽  
Izabela Szelest ◽  
Lucia Regolin ◽  
Giorgio Vallortigara

We report that adult nutcrackers ( Nucifraga columbiana ) and newborn domestic chicks ( Gallus gallus ) show a leftward bias when required to locate an object in a series of identical ones on the basis of its ordinal position. Birds were trained to peck at either the fourth or sixth element in a series of 16 identical and aligned positions. These were placed in front of the bird, sagittally with respect to its starting position. When, at test, the series was rotated by 90° lying frontoparallel to the bird's starting position, both species showed a bias for identifying selectively the correct position from the left but not from the right end. The similarity with the well-known phenomenon of the left-to-right spatially oriented number line in humans is considered.


Cortex ◽  
1993 ◽  
Vol 29 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Roger E. Kelley ◽  
Jen Y. Chang ◽  
Shuichi Suzuki ◽  
Bonnie E. Levin ◽  
Yolanda Reyes-Iglesias

1998 ◽  
Vol 10 (4) ◽  
pp. 472-484 ◽  
Author(s):  
Elizabeth Cowin Roth ◽  
Joseph B. Hellige

Right-handed observers were presented with stimuli consisting of a line and two horizontally separated dots. A categorical spatial task required observers to indicate whether the dots were above or below the line, and a coordinate spatial task required observers to indicate whether the line could fit into the space between the two dots. For the coordinate task, reaction time was faster when the stimuli were presented to the left visual field (right hemisphere) than when the stimuli were presented to the right visual field (left hemisphere). The opposite hemispheric asymmetry was obtained for the categorical task. In addition, coordinate spatial processing took longer with stimuli presented on a red background than with stimuli presented on a green background. The opposite trend characterized categorical spatial processing. Because the color red attenuates processing in the transient/magnocellular visual pathway, these results suggest that coordinate spatial processing is more dependent on the transient/magnocellular pathway than is categorical spatial processing. However, manipulations of color condition had no effect on visual field (hemispheric) asymmetries, suggesting that the two hemispheres rely on the same visual information and on the same computational mechanisms as each other—although they do not always use that information with equal efficiency.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


1990 ◽  
Vol 35 (6) ◽  
pp. 544-547
Author(s):  
Randi C. Martin
Keyword(s):  

2019 ◽  
Vol 133 (1) ◽  
pp. 118-131 ◽  
Author(s):  
Matteo De Tommaso ◽  
Gisela Kaplan ◽  
Cinzia Chiandetti ◽  
Giorgio Vallortigara

Sign in / Sign up

Export Citation Format

Share Document