Learning dynamic balancing in the roll plane with and without gravitational cues

2017 ◽  
Vol 235 (11) ◽  
pp. 3495-3503 ◽  
Author(s):  
Vivekanand Pandey Vimal ◽  
Paul DiZio ◽  
James R. Lackner
2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 55-71 ◽  
Author(s):  
Bin Wei ◽  
Dan Zhang

SUMMARYThe authors summarize the main dynamic balancing methods of robotic mechanisms in this paper. The majority of dynamic balancing methods have been presented, and there may be other dynamic balancing methods that are not included in this paper. Each of the balancing methods is reviewed and discussed. The advantages and disadvantages of each method are presented and compared. The goal of this paper is to provide an overview of recent research in balancing. The authors hope that this study can provide an informative reference for future research in the direction of dynamic balancing of robotic mechanisms.


2007 ◽  
Vol 31 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Zhang Ying ◽  
Yao Yan-An ◽  
Cha Jian-Zhong

This paper proposed a novel concept of active balancer for dynamic balancing of planar mechanisms. Somewhat similar to a vibration absorber, the active balancer is designed as an independent device, which is placed outside of the mechanism to be balanced and can be installed easily. It consists of a two degree-of-freedom (DOF) linkage with two input shafts, one of which is connected to the output shaft of the mechanism to be balanced by a joint coupling, and the other one is driven by a controllable motor. Flexible dynamic balancing adapted to different working conditions can be achieved by varying speed trajectories of the control motor actively. A design method is developed for selecting suitable speed trajectories and link parameters of the two DOF linkage of the balancer to meet various design requirements and constraints. Numerical examples are given to demonstrate the design procedure and to verify the feasibility of the proposed concept.


2004 ◽  
Vol 159 (2) ◽  
pp. 296-317 ◽  
Author(s):  
Vipul Agrawal ◽  
Xiuli Chao ◽  
Sridhar Seshadri

Sign in / Sign up

Export Citation Format

Share Document