scholarly journals Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer’s Disease

2018 ◽  
Vol 236 (11) ◽  
pp. 2857-2866 ◽  
Author(s):  
Waqar Ahmad
2017 ◽  
Author(s):  
Waqar Ahmad

AbstractThe microtubule associated tau protein becomes hyperphosphorylated in Alzheimer’s disease (AD). While hyperphosphorylation promotes neurodegeneration, the cause and consequences of this abnormal modification are poorly understood. As impaired energy metabolism is an important hallmark of AD progression, we tested whether it could trigger phosphorylation of human tau protein in a transgenic C. elegans model of AD. We found that inhibition of a mitochondrial enzyme of energy metabolism, dihydrolipoamide dehydrogenase (DLD) resulted in elevated whole-body glucose levels as well as increased phosphorylation of tau. Hyperglycemia and tau phosphorylation were induced by either epigenetic suppression of the dld-1 gene or by inhibition of the DLD enzyme by the inhibitor, 2-methoxyindole-2-carboxylic acid (MICA). Although the calcium ionophore A23187 could reduce tau phosphorylation induced by either chemical or genetic suppression of DLD, it was unable to reduce tau phosphorylation induced by hyperglycemia. While inhibition of the dld-1 gene or treatment with MICA partially reversed the inhibition of acetylcholine neurotransmission by tau, neither treatment affected tau inhibited mobility. Conclusively, any abnormalities in energy metabolism were found to significantly affect the AD disease pathology.


2017 ◽  
Author(s):  
Waqar Ahmad

AbstractDeclines in energy metabolism and associated mitochondrial enzymes are linked to the progression of Alzheimer’s disease (AD). Dihydrolipoamide dehydrogenase (dld) and two of its enzyme complexes namely, pyruvate dehydrogenase and α-ketoglutarate dehydrogenase are associated with AD and have a significant role in energy metabolism. Interestingly, dld gene variants are genetically linked to late-onset AD; and reduced activity of DLD-containing enzyme complexes has been observed in AD patients. To understand how energy metabolism influences AD progression, we suppressed the dld-1 gene in C. elegans expressing the human Aβ peptide. dld-1 gene suppression improved many aspects of vitality and function directly affected by Aβ pathology in C. elegans. This includes protection against paralysis, improved fecundity and improved egg hatching rates. Suppression of the dld-1 gene restores normal sensitivity to aldicarb, levamisole and serotonin, and improves chemotaxis. Suppression of dld-1 does not decrease levels of the Aβ peptide, but does reduce the formation of toxic Aβ oligomers. The mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) acts synergistically with Aβ to overcome the protective effect of dld-1 gene suppression. Another metabolic toxin, phosphine, acted additively with Aβ. Our work supports the hypothesis that lowering energy metabolism may protect against Aβ pathogenicity, but that this may increase susceptibility to other metabolic disturbances.


2017 ◽  
Author(s):  
Waqar Ahmad

AbstractFormation of Aβ plaques from peptide oligomers and development of neurofibrillary tangles from hyperphosphorylated tau are hallmarks of Alzheimer’s disease (AD). These markers of AD severity are further associated with impaired glucose metabolism. However, the exact role of glucose metabolism on disease progression has not been elucidated. In this study, the effects of glucose on Aβ and tau-mediated toxicity are investigated using a C. elegans model system. We find that addition of glucose or 2-deoxy-d-glucose (2DOG) to the growth medium delayed Aβ-associated paralysis, though it was unable to restore previously impaired acetylcholine neurotransmission in pre-existing Aβ-mediated pathology. Glucose also inhibited egg laying and hatching in the worms that express Aβ. The harmful effects of glucose were associated with an increase in toxic Aβ oligomers. Increased phosphorylation of tau is associated with formation of neurofibrillary tangles (NFTs) and increased severity of AD, but O-β-GlcNAcylation can inhibit phosphorylation of adjacent phosphorylation sites. We reasoned that high glucose levels might induce tau O-β-GlcNAcylation, thereby protecting against tau phosphorylation. Contrary to our expectation, glucose increased tau phosphorylation but not O-β-GlcNAcylation. Increasing O-β-GlcNAcylation, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and therefore reduce tau phosphorylation. Furthermore, reducing O-β-GlcNAcylation by suppressing O-GlcNAc transferase (ogt-1) gene causes an increase in tau phosphorylation. These results suggest that protective O-β-GlcNAcylation is not induced by glucose. Instead, as with vertebrates, we demonstrate that high levels of glucose exacerbate disease progression by promoting Aβ aggregation and tau hyperphosphorylation, resulting in disease symptoms of increased severity. The effects of glucose cannot be effectively managed by manipulating O-β-GlcNAcylation in the tau models of AD in C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Priyanka Joshi ◽  
Michele Perni ◽  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Sam Casford ◽  
...  

AbstractAge-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.


2019 ◽  
Vol 22 ◽  
pp. 110-120 ◽  
Author(s):  
Marine Tournissac ◽  
Philippe Bourassa ◽  
Ruben D. Martinez-Cano ◽  
Tra-My Vu ◽  
Sébastien S. Hébert ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel E. Lackie ◽  
Jose Marques-Lopes ◽  
Valeriy G. Ostapchenko ◽  
Sarah Good ◽  
Wing-Yiu Choy ◽  
...  

Abstract Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.


Sign in / Sign up

Export Citation Format

Share Document