Effects of a Single Bout of Resistance Exercise on Calcium and Bone Metabolism in Untrained Young Males

1998 ◽  
Vol 62 (2) ◽  
pp. 104-108 ◽  
Author(s):  
N. Ashizawa ◽  
G. Ouchi ◽  
R. Fujimura ◽  
Y. Yoshida ◽  
K. Tokuyama ◽  
...  
2001 ◽  
Vol 33 (5) ◽  
pp. S39
Author(s):  
C S. KIM ◽  
Y MAEKAWA ◽  
M FUJITA ◽  
D NAKAJIMA ◽  
M NISHIMUTA ◽  
...  

2000 ◽  
Vol 25 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Craig S. Ballantyne ◽  
Stuart M. Phillips ◽  
Jay R. Macdonald ◽  
Mark A. Tarnopolsky ◽  
J. Duncan Macdougall

We examined the effects of androstenedione supplementation on the hormonal profile of 10 males and its interaction with resistance exercise. Baseline testosterone, luteinizing hormone, estradiol, and androstenedione concentrations were established by venous sampling at 3 hr intervals over 24 hr. Subjects ingested 200 mg of androstenedione daily for 2 days, with second and third day blood samples. Two weeks later, they ingested androstenedione or a placebo for 2 days, in a double-blind, cross-over design. On day 2, they performed heavy resistance exercise with blood sampled before, after, and 90 min post. The supplement elevated plasma androstenedione 2-3-fold and luteinizing hormone ∼70% but did not alter testosterone concentration. Exercise elevated testosterone, with no difference between conditions. Exercise in the supplemented condition significantly elevated plasma estradiol by ∼83% for 90 min. Androstenedione supplementation, thus, is unlikely to provide male athletes with any anabolic benefit and, with heavy resistance exercise, elevates estrogen. Key Words: testosterone, luteinizing hormone, estradiol, fluid shifts, resistance exercise


2002 ◽  
Vol 93 (1) ◽  
pp. 394-403 ◽  
Author(s):  
Fadia Haddad ◽  
Gregory R. Adams

Training protocols apply sequential bouts of resistance exercise (RE) to induce the cellular and molecular responses necessary to produce compensatory hypertrophy. This study was designed to 1) define the time course of selected cellular and molecular responses to a single bout of RE and 2) examine the effects of interbout rest intervals on the summation of these responses. Rat muscles were exposed to RE via stimulation of the sciatic nerve in vivo. Stimulated and control muscles were obtained at various time points post-RE and analyzed via Western blot and RT-PCR. A single bout of RE increased intracellular signaling (i.e., phosphorylations) and expression of mRNAs for insulin-like growth factor-I system components and myogenic markers (e.g., cyclin D1, myogenin). A rest interval of 48 h between RE bouts resulted in much greater summation of myogenic responses than 24- or 8-h rest intervals. This experimental approach should be useful for studying the regulatory mechanisms that control the hypertrophy response. These methods could also be used to compare and contrast different exercise parameters (e.g., concentric vs. eccentric, etc.).


2014 ◽  
Vol 19 (2) ◽  
pp. 64-71 ◽  
Author(s):  
Lausanne B.C.C. Rodrigues ◽  
Cláudia L.M. Forjaz ◽  
Aluísio H.R.A. Lima ◽  
Alessandra S. Miranda ◽  
Sérgio L.C. Rodrigues ◽  
...  

1999 ◽  
Vol 276 (1) ◽  
pp. E118-E124 ◽  
Author(s):  
S. M. Phillips ◽  
K. D. Tipton ◽  
A. A. Ferrando ◽  
R. R. Wolfe

We examined the effect of resistance training on the response of mixed muscle protein fractional synthesis (FSR) and breakdown rates (FBR) by use of primed constant infusions of [2H5]phenylalanine and [15N]phenylalanine, respectively, to an isolated bout of pleiometric resistance exercise. Trained subjects, who were performing regular resistance exercise (trained, T; n = 6), were compared with sedentary, untrained controls (untrained, UT; n = 6). The exercise test consisted of 10 sets (8 repetitions per set) of single-leg knee flexion (i.e., pleiometric muscle contraction during lowering) at 120% of the subjects’ predetermined single-leg 1 repetition maximum. Subjects exercised one leg while their contralateral leg acted as a nonexercised (resting) control. Exercise resulted in an increase, above resting, in mixed muscle FSR in both groups (UT: rest, 0.036 ± 0.002; exercise, 0.0802 ± 0.01; T: rest, 0.045 ± 0.004; exercise, 0.067 ± 0.01; all values in %/h; P< 0.01). In addition, exercise resulted in an increase in mixed muscle FBR of 37 ± 5% (rest, 0.076 ± 0.005; exercise, 0.105 ± 0.01; all values in %/h; P < 0.01) in the UT group but did not significantly affect FBR in the T group. The resulting muscle net balance (FSR − FBR) was negative throughout the protocol ( P < 0.05) but was increased in the exercised leg in both groups ( P < 0.05). We conclude that pleiometric muscle contractions induce an increase in mixed muscle protein synthetic rate within 4 h of completion of an exercise bout but that resistance training attenuates this increase. A single bout of pleiometric muscle contractions also increased the FBR of mixed muscle protein in UT but not in T subjects.


2007 ◽  
Vol 56 (2) ◽  
pp. 215-222
Author(s):  
NATSUMI SUZUKI ◽  
KATSUJI AIZAWA ◽  
AKIKO MEKARU ◽  
MI HYUN JOO ◽  
FUMIE MURAI ◽  
...  

2018 ◽  
Vol 62 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Kai Shiau ◽  
Te Hung Tsao ◽  
Chang Bin Yang

Abstract This study examined the effects of one single bout daily versus triple bouts of resistance exercise for 12 weeks on muscular strength and anaerobic performance of the upper body. Twenty young male adults (age: 22.0 ± 1.0 years, bench press: 44.0 ± 10.3 kg) were randomly assigned to a single bout (SB) or triple bouts (TB) of resistance exercise group. Maximal strength and anaerobic performance of the upper body using the bench press (one-repetition maximum) and the modified 30 s Wingate test were determined before and after the intervention. Additionally, changes in lactate levels before and after the Wingate test were measured. Although the SB and TB groups showed a significant increase in maximal strength (post-intervention, SB: 67.2 ± 9.2 and TB: 67.6 ± 7.6 kg, respectively) compared with the values at pre-intervention (SB: 44.6 ± 11.4 and TB: 43.9 ± 8.7 kg, respectively), there was no significant difference for this variable between the two groups post-intervention (p > 0.05). The anaerobic performance of the upper body in the SB and TB groups also displayed improvements without significant difference between the two groups after the completion of different training regimes. On the basis of the same training volume, multiple bouts of resistance training showed similar improvements in maximal strength and anaerobic performance to one bout of resistance training in young adult men without prior experience in resistance training


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Masahiro Horiuchi ◽  
Arisa Ni-i-nou ◽  
Mitsuhiro Miyazaki ◽  
Daisuke Ando ◽  
Katsuhiro Koyama

We investigated the effects of resistance exercise under hypoxia on postexercise hemodynamics in eight healthy young males. The subjects belonged to a track & field club (sprinters, hurdlers, and long jumpers) and engage in regular physical training (1-2 h per day, 3-5 days per week). Each participant performed eight sets of bilateral leg squats with a one-minute interval under normoxia (room air) and hypoxia (13 % FiO2). During a 60-minute recovery, we set normoxic condition either after normoxic or hypoxic exercise. These two experimental protocols (normoxia and hypoxia) were performed in a random order with a one-week washout period. The leg squat exercise consists of 50 % 1-RM (14 repetitions) × 5 sets and 50% 1-RM (repetitions max; 7 repetitions) × 3 sets. The resting period between each set was 1 min, and a total of 91 repetitions were performed. Blood pressure, heart rate (HR), and several biomarkers were measured pre- and postexercise. The mean arterial pressure (MAP) significantly decreased after exercise compared to the pre-exercise values under both conditions (P < 0.05). The MAP at 20 and 30 min of recovery in hypoxia was significantly lower than in normoxia (P < 0.05, respectively). The antidiuretic hormone significantly increased after 60 min of recovery in both conditions; moreover, the values in hypoxia were significantly higher than those in normoxia (P < 0.05). The delta changes in MAP from baseline (pre-exercise) were significantly related to changes in HR from baseline in normoxia (r = 0.560, P < 0.001) but not in hypoxia. These results suggest that the hypoxic condition elicits greater hypotension after resistance exercise in comparison to normoxia. Moreover, the underlying mechanisms for the attenuation of hypotension after resistance exercise may differ between normoxia and hypoxia.


Sign in / Sign up

Export Citation Format

Share Document