Vulnerability of spawning aggregations of a coastal marine fish to a small-scale fishery

2017 ◽  
Vol 164 (5) ◽  
Author(s):  
Brad E. Erisman ◽  
Juan José Cota-Nieto ◽  
Marcia Moreno-Báez ◽  
Octavio Aburto-Oropeza
2017 ◽  
Vol 74 (7) ◽  
pp. 1009-1015 ◽  
Author(s):  
Zofia Baumann ◽  
Robert P. Mason ◽  
David O. Conover ◽  
Prentiss Balcom ◽  
Celia Y. Chen ◽  
...  

Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total mercury (Hg) [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg·g dry weight−1 per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species.


2019 ◽  
Vol 650 ◽  
pp. 2129-2140 ◽  
Author(s):  
Gaël Le Croizier ◽  
Gauthier Schaal ◽  
David Point ◽  
François Le Loc'h ◽  
Eric Machu ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 862-867
Author(s):  
Nicholas J. Clark ◽  
James T. Kerry ◽  
Ceridwen I. Fraser

2017 ◽  
Vol 165 (1) ◽  
Author(s):  
Adrian Munguia-Vega ◽  
S. Guido Marinone ◽  
David A. Paz-Garcia ◽  
Alfredo Giron-Nava ◽  
Tomas Plomozo-Lugo ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Lydia Gaspare ◽  
Ian Bryceson

The reproductive biology and fishery-related characteristics of the Malabar grouper (Epinephelus malabaricus) (Bloch and Schneider, 1801) specimens were investigated. The size of females ranged from 25 to 113 cm total length (LT), with 50% sexually mature at 79 cmLT, and the males (97 cm to 114 cmLT) were larger than the females. Due to the sex ratios and size distribution of the sample, it appeared that the groupers change sex between 97 and 113 cmLT. However, the gonadal histology data lacked specimens in the transitional stage. The spawning peak occurred in November, as defined by the presence of ripe females, and the spawning season lasted from September to February. The size of the fish correlated positively with the water depth at capture, which is also related to oxygen levels in deep water being more favourable for larger fish. Larger specimens (>100 cmLT) were targeted by fishers between December and February, when the northeast monsoon coincides with calmer weather and the spawning season. Fishers were interviewed, and observations were made on fishing gear, vessels, and grounds. There was no indication that small-scale fishers targeted spawning aggregations; therefore, fisheries independent research is recommended in order to verify the time, location, and behaviour of the spawning of Malabar groupers for management and conservation purposes.


2021 ◽  
Author(s):  
◽  
Danielle Amelia Hannan

<p>Understanding the different types of genetic population structure that characterise marine species, and the processes driving such patterns, is crucial for establishing links between the ecology and evolution of a species. This knowledge is vital for management and conservation of marine species. Genetic approaches are a powerful tool for revealing ecologically relevant insights to marine population dynamics. Geographic patterns of genetic population structure are largely determined by the rate at which individuals are exchanged among populations (termed ‘population connectivity’), which in turn is influenced by conditions in the physical environment. The complexity of the New Zealand marine environment makes it difficult to predict how physical oceanographic and environmental processes will influence connectivity in coastal marine organisms and hence the type of genetic structure that will form. This complexity presents a challenge for management of marine resources but also makes the New Zealand region an interesting model system to investigate how and why population structure develops and evolves over time. Paphies subtriangulata (tuatua) and P. australis (pipi) are endemic bivalve ‘surf clams’ commonly found on New Zealand surf beaches and harbour/estuary environments, respectively. They form important recreational, customary and commercial fisheries, yet little is known about the stock structure of these species. This study aimed to use genetic techniques to determine population structure, levels of connectivity and ‘seascape’ genetic patterns in P. subtriangulata and P. australis, and to gain further knowledge of common population genetic processes operating in the New Zealand coastal marine environment. Eleven and 14 novel microsatellite markers were developed for P. subtriangulata and P. australis, respectively. Samples were collected from 10 locations for P. subtriangulata and 13 locations for P. australis (35-57 samples per location; total sample size of 517 for P. subtriangulata and 674 for P. australis). Geographic patterns of genetic variation were measured and rates of migration among locations were estimated on recent and historic time scales. Both species were characterised by genetic population structure that was consistent with their habitat. For P. subtriangulata, the Chatham Island population was strongly differentiated from the rest of the sampled locations. The majority of mainland locations were undifferentiated and estimated rates of migration among locations were high on both time scales investigated, although differentiation among some populations was observed. For P. australis, an overall isolation by distance (IBD) pattern was likely to be driven by distance between discrete estuary habitats. However, it was difficult to distinguish IBD from hierarchical structure as populations could be further subdivided into three significantly differentiated groups (Northern, South Eastern and South Western), providing evidence for barriers to dispersal. Further small scale patterns of genetic differentiation were observed in some locations, suggesting that complex current patterns and high self-recruitment drive small scale genetic population structure in both P. subtriangulata and P. australis. These patterns of genetic variation were used in seascape genetic analyses to test for associations with environmental variables, with the purpose of understanding the processes that might shape genetic population structure in these two species. Although genetic population structure varied between the two species, common physical and environmental variables (geographic distance, sea surface temperature, bed slope, tidal currents) are likely to be involved in the structuring of populations. Results suggest that local adaptation, in combination with restricted dispersal, could play a role in driving the small scale patterns of genetic differentiation seen among some localities. Overall, the outcomes of this research fill a gap in our knowledge about the rates and routes by which populations are connected and the environmental factors influencing such patterns in the New Zealand marine environment. Other studies have highlighted the importance of using multi-faceted approaches to understand complex processes operating in the marine environment. The present study is an important first step in this direction as these methods are yet to be widely applied to New Zealand marine species. Importantly, this study used a comparative approach, applying standardised methodology to compare genetic population structure and migration across species. Such an approach is necessary if we wish to build a robust understanding of the spatial and temporal complexities of population dynamics in the New Zealand coastal marine environment, and to develop effective management strategies for our unique marine species.</p>


Sign in / Sign up

Export Citation Format

Share Document