Molecular Variability and Evolution of the Pectate Lyase (pel-2) Parasitism Gene in Cyst Nematodes Parasitizing Different Solanaceous Plants

2010 ◽  
Vol 72 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Barbara Geric Stare ◽  
Didier Fouville ◽  
Saša Širca ◽  
Aurore Gallot ◽  
Gregor Urek ◽  
...  
2011 ◽  
Vol 50 (No. 2) ◽  
pp. 70-74 ◽  
Author(s):  
P. Sedlák ◽  
M. Melounová ◽  
S. Skupinová ◽  
P. Vejl ◽  
J. Domkářová

Potato cyst nematodes (PCN) are the big problem in worldwide planting of potatoes and another Solanaceous plants. Identification of individual pathotypes according to international scheme is very demanding but a very important part of the phytosanitary process to control these pests. Molecular genetic identification of different plant and animal species or individuals is a very interesting way at the present time and let’s hope that it will be important in future. This report presents results of the RAPD study of nine different real PCN populations. There were five Globodera rostochiensis populations and four G. pallida populations. Pathotypes Ro2, Ro2/3, Ro4, Ro5, Pa2 and Pa3 were from European populations; population Ro1 and X were of Czech provenance. Genetics variable of these populations was described by a set of six decameric primers (OPA 07, OPG 03, OPG 05, OPG 08, OPG 10 and OPG 13). Genetic dissimilarity was by Gel Manager for Windows evaluated. Detectable differences behind all populations were found and the dendrogram was compiled. The unknown population X was sorted into group of Globodera pallida species subgroup of Pa2 consequently.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 909-916
Author(s):  
A. M. Spaull ◽  
D. M. McCormack ◽  
E. B. Pike

Samples of sewage sludges, taken over a 12-month period from 9 Scottish sewage works, contained on average 0.24 cysts of Globodera spp. (potato cyst-nematodes) of which 11% were viable. The incidence was not significantly related to season or to the presence of vegetable-processing effluent. Exposure of cysts in sludge to mesophilic anaerobic digestion (35 °C, 30 min) cold anaerobic digestion (9 weeks), pasteurisation (70 °C, 30 min) and aerobic thermophilic digestion (60 °C, ld) reduced viability of eggs within the cysts by almost 100%. Sludges so treated can therefore be considered to be free from infection risk to potato crops, although the non-infective cysts may still be recovered. Treatment with lime at pH 11.5 (20 °C, 24 h), by aerobic stabilisation in an oxidation ditch (7 weeks) and by activated-sludge treatment (5d) did not reduced viability acceptably. Accelerated cold digestion did not reduce viability sufficiently after the usual 15 weeks but rendered eggs completely non-viable after 21 weeks. The results show that even sludge treated to destroy viable cysts should not be applied to land used for growing seed potatoes and subject to testing for freedom from infestation. Treatment destroying viability should increase the acceptability of sludge for ware potato growers, although the numbers of cysts applied in untreated sludge would be unlikely to increase significantly levels of cysts in soils already infested.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1309-1318 ◽  
Author(s):  
Lei Zhao ◽  
Wen Yang ◽  
Yuanle Zhang ◽  
Zhanmin Wu ◽  
Qiao-Chun Wang ◽  
...  

Kiwifruit (Actinidia spp.) is an economically substantial fruit crop with China the main producer. China is the primary source of wild kiwifruit and the largest producer of kiwifruit in terms of both production and planting area, and Shaanxi province is the largest kiwifruit producer in China. Previous studies reported presence of kiwifruit viruses in Actinidia chinensis. In this study, six viruses were identified in kiwifruit ‘Xuxiang’ (A. deliciosa) in Shaanxi, China. The incidence, distribution, and genetic diversity of these viruses were studied. The results showed that Actinidia virus A (AcVA), Actinidia virus B (AcVB), Actinidia chlorotic ringspot-associated virus (AcCRaV), cucumber mosaic virus (CMV), apple stem grooving virus (ASGV), and potato virus X (PVX) were the main viruses infecting Xuxiang kiwifruit in Shaanxi, China. Incidence of the various viruses with both single and multiple infection varied with different kiwifruit-growing counties. For single virus infection, the highest and the lowest numbers of samples infected were about 22 for AcCRaV and 0 for AcVB in Meixian out of 170 samples, 12 for AcVA and 0 for CMV in Zhouzhi out of 120 samples, 10 for AcVA and 0 for AcVB, AcCRaV, ASGV, PVX, and CMV in Yangling out of 70 samples, and 8 for AcCRaV and CMV and 0 for AcVA, AcVB, ASGV, and PVX in Hanzhong out of 80 samples, respectively. Samples which were multiply infected with two or more viruses were also detected. Analysis of the phylogenetic tree of these viruses showed some genetic variability in the AcVA, AcVB, and AcCRaV isolates of Shaanxi kiwifruit. There was no obvious molecular variation in the coat protein genes of ASGV, CMV, and PVX virus isolates from Shaanxi kiwifruit. The present study is the first large-scale survey of kiwifruit viruses in Shaanxi, China. To our knowledge, this is the first report of PVX infecting kiwifruit and the first report of molecular variability of AcVA, AcVB, and AcCRaV. These results provide important data for studying the genetic evolution of AcVA, AcVB, AcCRaV, ASGV, CMV, and PVX.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
John Wainer ◽  
Quang Dinh

The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Olaf Kranse ◽  
Helen Beasley ◽  
Sally Adams ◽  
Andre Pires-daSilva ◽  
Christopher Bell ◽  
...  

Abstract Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


Sign in / Sign up

Export Citation Format

Share Document