Pediatric head computed tomography with advanced modeled iterative reconstruction: focus on image quality and reduction of radiation dose

2019 ◽  
Vol 50 (2) ◽  
pp. 242-251 ◽  
Author(s):  
Hyun-Hae Cho ◽  
So Mi Lee ◽  
Sun Kyoung You
2020 ◽  
Vol 9 (1) ◽  
pp. 27-31
Author(s):  
Mahesh Gautam ◽  
Aziz Ullah ◽  
Manish Raj Pathak

Background: Standard dose computed tomography is standard imaging modality in diagnosis of urolithiasis. The introduction of low dose techniques results in decrease radiation dose without significant change in image quality. However, the image quality of low dose computed tomography is affected by skin fold thickness and subcutaneous abdominal adipose tissue. The aim of this study to evaluate stone location, size, and density using low dose computed tomography compared with standard dose computed tomography in obese population. Material and Methods: This non-randomized non-inferiority trial includes 120 patient having BMI≥25kg/m2 with acute ureteric colic. The low dose and standard dose computed tomography were performed accordingly. Effective radiation doses were calculated from dose-length product obtained from scan report using conversion factor of 0.015. The images were reconstructed using iterative reconstruction algorithm. Effective dose, number and size of stone, Hounsfield Unit value of stone and image quality was assessed. Results: Stones were located in 69 (57.5%) in right and 51 (42.5%) in left ureter. There was no statistical difference in mean diameter, number and density of stones in low dose as compared with standard dose. The radiation dose was significantly lower with low dose. (3.68 mSv) The delineation of the ureter, outline of the stones and image quality in low dose was overall sufficient for diagnosis. No images of low dose scan were subjectively rated as non-diagnostics. Conclusion: Low dose computed tomography with iterative reconstruction technique is as effective as standard dose in diagnosis of ureteric stones in obese patients with lower effective radiation dose.


2018 ◽  
Vol 60 (2) ◽  
pp. 177-185
Author(s):  
Xiangying Du ◽  
Bin Lu ◽  
Daoyu Hu ◽  
Bin Song ◽  
Kuncheng Li

Background Concern about radiation exposure is leading to an increasing interest in low-concentration contrast medium administration. Purpose To evaluate the image quality and safety profile after administration of iodixanol 270 mg I/mL at 100-kVp tube voltage with iterative reconstruction in subjects undergoing computed tomography angiography (CTA). Material and Methods Patients who completed CTA examination using iodixanol 270 mg I/mL and 100-kVp tube voltage along with iterative reconstruction for coronary, aortic, head and neck, renal, or pulmonary arteries were included. Image quality was qualitatively and quantitatively evaluated. Incidence of adverse events (AEs) and adverse drug reactions (ADRs) within seven days and radiation dose were also analyzed. Results A total of 4513 individuals in 42 centers in China were enrolled, among which 4367 were included in efficacy analysis. The mean image quality score was 4.8 ± 0.45 across all arteries (all above 4.6) and 99.7% of the individuals’ images were classified as evaluable. The CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the regions of interest (ROIs) were 431.79 ± 99.018, 18.29 ± 11.947, and 28.21 ± 19.535 HU, respectively. Of all the participants, 68 (1.5%) and 65 (1.4%) experienced AEs and ADRs, respectively. No serious AEs or AEs leading to discontinuation occurred. The average effective radiation dose was 3.13 ± 2.550 mSv. Conclusion Iodixanol 270 mg I/mL in combination with 100-kVp tube voltage and iterative reconstruction could be safely applied in CTA and yield high-quality and evaluable images with reduced radiation dose.


2015 ◽  
Vol 45 (12) ◽  
pp. 1814-1822 ◽  
Author(s):  
Joana Santos ◽  
Shane Foley ◽  
Graciano Paulo ◽  
Mark F. McEntee ◽  
Louise Rainford

Sign in / Sign up

Export Citation Format

Share Document