Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions

2001 ◽  
Vol 41 (2) ◽  
pp. 132-139 ◽  
Author(s):  
B. Völksch ◽  
R. May
Author(s):  
Melanie R. Smee ◽  
Imperio Real-Ramirez ◽  
Catalina Zuluaga Arias ◽  
Tory A. Hendry

Interactions between epiphytic bacteria and herbivorous insects are ubiquitous on plants, but little is known about their ecological implications. Aphids are devastating crop pests worldwide, and so understanding how epiphytic bacteria impact aphid populations is critically important. Recent evidence demonstrates that plant-associated bacteria, such as Pseudomonas syringae, can be highly virulent to one species of aphid, the pea aphid (Acyrthosiphon pisum). Yet currently we have no knowledge on how broad this phenomenon is across diverse aphid species that are of high agricultural concern. In controlled experiments using oral exposure in artificial diet, we challenged five aphid species of agricultural importance with three strains of P. syringae that vary in virulence to the pea aphid. These strains also vary in epiphytic ability and comprise two phytopathogens and one non-plant pathogenic strain. In general, differences in virulence to aphids remained relatively constant across strains regardless of the aphid species, except for the bird cherry-oat aphid (Rhopalosiphum padi) which is significantly less susceptible to two P. syringae strains. We demonstrate that lower infection incidence likely plays a role in the reduced susceptibility. Importantly, these data support previous results showing that interactions with epiphytic bacteria are important for aphids and may play a large, but underappreciated, role in insect population dynamics. Our study illustrates a potential role of epiphytic bacteria in the biological control of aphid pests broadly, but suggests the need for more research encompassing a greater diversity of pest species. Importance Sap-sucking aphids are insects of huge agricultural concern, not only because of direct damage caused by feeding, but also because of their ability to transmit various plant pathogens. Some bacteria that grow on leaf surfaces, such as Pseudomonas syringae, can infect and kill aphids, making them potentially useful in biological control of pest aphids. However, only one aphid species, the pea aphid (Acyrthosiphon pisum) has been tested for infection by P. syringae. Here we challenged five aphid species of agricultural importance with three strains of P. syringae that vary in virulence to the pea aphid. We found that four of these aphid species were susceptible to infection and death, suggesting that these bacteria could be broadly useful for biological control. However, one aphid species was much more resistant to infection, indicating that more testing on diverse aphid species is needed.


2002 ◽  
Vol 92 (12) ◽  
pp. 1284-1292 ◽  
Author(s):  
M. Wilson ◽  
H. L. Campbell ◽  
P. Ji ◽  
J. B. Jones ◽  
D. A. Cuppels

Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, continues to be a problem for tomato growers worldwide. A collection of nonpathogenic bacteria from tomato leaves plus P. syringae strains TLP2 and Cit7, P. fluorescens strain A506, and P. syringae pv. tomato DC3000 hrp mutants were examined in a greenhouse bioassay for the ability to reduce foliar bacterial speck disease severity. While several of these strains significantly reduced disease severity, P. syringae Cit7 was the most effective, providing a mean level of disease reduction of 78% under greenhouse conditions. The P. syringae pv. tomato DC3000 hrpA, hrpH, and hrpS mutants also significantly reduced speck severity under greenhouse conditions. The strains with the greatest efficacy under greenhouse conditions were tested for the ability to reduce bacterial speck under field conditions at locations in Alabama, Florida, and Ontario, Canada. P. syringae Cit7 was the most effective strain, providing a mean level of disease reduction of 28% over 10 different field experiments. P. fluorescens A506, which is commercially available as Blight-Ban A506, provided a mean level of disease reduction of 18% over nine different field experiments. While neither P. syringae Cit7 nor P. fluorescens A506 can be integrated with copper bactericides due to their copper sensitivity, there exist some potential for integrating these biological control agents with “plant activators”, including Actigard. Of the P. syringae pv. tomato DC3000 hrp mutants tested, only the hrpS mutant reduced speck severity significantly under field conditions.


2020 ◽  
Vol 12 (18) ◽  
pp. 7816
Author(s):  
Vivek Kumar ◽  
Lucky Mehra ◽  
Cindy L. McKenzie ◽  
Lance S. Osborne

The early establishment of a biocontrol agent in the production system, whether in the greenhouse, nursery, or field, is essential for the success of the biological control program, ensuring growers’ profitability. In an effort to develop a sustainable pest management solution for vegetable growers in Florida, we explored the application of a preemptive biological control strategy, “Predator-In-First” (PIF), in regulating multiple pepper pests, Bemisia tabaci Gennadius, Frankliniella occidentalis Pergande, and Polyphagotarsonemus latus Banks under greenhouse and field conditions during different growing seasons. In these studies, two bell pepper cultivars (7039 and 7141) and the phytoseiid mite Amblyseius swirskii Athias–Henriot were used as a model system. Pepper seedlings (~8 week) of each cultivar were infested with varying rates of A. swirskii (20 or 40 mites/plant or one sachet/10 plant) and allowed to settle on plant hosts for a week before planting in pots or field beds. Results showed a comparative consistent performance of the treatment with the high rate of phytoseiids (40 mites/plant) in regulating B. tabaci and F. occidentalis populations in greenhouse studies, and B. tabaci and P. latus pests under field conditions. During two fall field seasons, higher marketable yields of 12.8% and 20.1% in cultivar 7039, and 24.3% and 39.5% in cultivar 7141 were observed in the treatment with the high rate of phytoseiids compared to the untreated control, indicating yield benefits of the approach. The outcome of the study is encouraging and demonstrates that PIF can be an important tool for organic vegetable growers and a potential alternative to chemical-based conventional pest management strategies. The advantages and limitations of the PIF approach in Florida pepper production are discussed.


2012 ◽  
Vol 50 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Mi-Seon Hahm ◽  
Marilyn Sumayo ◽  
Ye-Ji Hwang ◽  
Seon-Ae Jeon ◽  
Sung-Jin Park ◽  
...  

BioControl ◽  
2008 ◽  
Vol 54 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Analía Edith Perelló ◽  
Maria Virginia Moreno ◽  
Cecilia Mónaco ◽  
María Rosa Simón ◽  
Cristina Cordo

Sign in / Sign up

Export Citation Format

Share Document