Sludge flotation, its causes and control in granular sludge upflow reactors

2018 ◽  
Vol 102 (15) ◽  
pp. 6383-6392 ◽  
Author(s):  
Bo Wang ◽  
Di Wu ◽  
XiaoLei Zhang ◽  
Hamish R. Mackey ◽  
Guang-Hao Chen
2004 ◽  
Vol 50 (8) ◽  
pp. 217-224 ◽  
Author(s):  
C.-Y. Lee ◽  
H.-S. Shin ◽  
S.-J. Hwang

Simultaneous denitrification and methanogenesis were accomplished in a single upflow sludge blanket (USB) reactor. More than 99% and 95% of nitrate and chemical oxygen demand (COD) removal rates were obtained at a loading of 600 mg NO3-N/L·d and 3,300 mg COD/L·d, respectively. The specific denitrification rate (SDR) increased as COD/NO3-N ratios decreased. Maximum SDR with acetate could reach 1.05 g NO3-N/gVSS·d. Significant sludge flotation was observed at the top of the reactor due to the change of microbial composition and the formation of hollow granules. Granules became fluffy and buoyant due to the growth of denitrifiers. Microscopic examination showed that granules exhibited layered structure and they were mainly composed of Methanosarcina sp., Pseudomonas sp., and rod-shaped bacteria.


2010 ◽  
Vol 44 (11) ◽  
pp. 3321-3328 ◽  
Author(s):  
Jianwei Chen ◽  
Qixing Ji ◽  
Ping Zheng ◽  
Tingting Chen ◽  
Caihua Wang ◽  
...  

2018 ◽  
Vol 144 (12) ◽  
pp. 04018122
Author(s):  
Tarworn Ruttithiwapanich ◽  
Wimolsiri Pridasawas ◽  
Wiwat Ruenglertpanyakul ◽  
Warinthorn Songkasiri

2012 ◽  
Vol 17 (5) ◽  
pp. 1093-1102 ◽  
Author(s):  
Ting-Ting Chen ◽  
Ping Zheng ◽  
Li-Dong Shen ◽  
Chong-Jian Tang ◽  
Shuang Ding

2008 ◽  
Vol 58 (2) ◽  
pp. 309-315 ◽  
Author(s):  
A. Carucci ◽  
S. Milia ◽  
G. De Gioannis ◽  
M. Piredda

In this study, the possibility to use acetate-fed aerobic granular sludge for the degradation of low chlorinated 4-mono-chlorophenol (4CP) and highly chlorinated 2,4,6-tri- chlorophenol (TCP) was investigated. A Granulated Sequencing Batch Reactor (GSBR) was used to carry out the experiments, with acetate as growth substrate. 4CP concentration in the influent ranged between 0 and 50 mg/l, while TCP concentration varied between 0 and 15 mg/l. Different operating conditions were applied in order to obtain the complete aerobic degradation of 4CP. For TCP degradation, anaerobic feeding and control of dissolved oxygen concentration in the bulk liquid were used to keep the granules core under anaerobic conditions due to diffusion limitations: the possibility to obtain TCP reductive dechlorination under aerated conditions was thus investigated. Differences in granules shape and size were observed with 4CP and TCP dosed in the influent, and the effects of such toxic compounds on acetate removal were evaluated. Aerobic granules grown on acetate as carbon source proved to be an interesting solution for the degradation of 4CP, showing good resistance to high 4CP concentrations in the influent even if unacclimated. The presence of TCP did not irreversibly inhibit biomass activity, and complete TCP degradation was achieved after acclimation.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
G. Mazzocchi ◽  
P. Rebuffat ◽  
C. Robba ◽  
P. Vassanelli ◽  
G. G. Nussdorfer

It is well known that the rat adrenal zona glomerulosa steroidogenic activity is controlled by the renin-angiotensin system. The ultrastructural changes in the rat zona glomerulosa cells induced by renovascular hypertension were described previously, but as far as we are aware no correlated biochemical and morphometric investigations were performed.Twenty adult male albino rats were divided into 2 experimental groups. One group was subjected to restriction of blood flow to the left kidney by the application of a silver clip about the left renal artery. The other group was sham-operated and served as a control. Renovascular hypertension developed in about 10 days: sistolic blood pressure averaged 165 ± 6. 4 mmHg, whereas it was about 110 ± 3. 8 mmHg in the control animals. The hypertensive and control rats were sacrificed 20 days after the operation. The blood was collected and plasma renin activity was determined by radioimmunological methods. The aldosterone concentration was radioimmunologically assayed both in the plasma and in the homogenate of the left capsular adrenal gland.


Author(s):  
Henry I. Smith ◽  
D.C. Flanders

Scanning electron beam lithography has been used for a number of years to write submicrometer linewidth patterns in radiation sensitive films (resist films) on substrates. On semi-infinite substrates, electron backscattering severely limits the exposure latitude and control of cross-sectional profile for patterns having fundamental spatial frequencies below about 4000 Å(l),Recently, STEM'S have been used to write patterns with linewidths below 100 Å. To avoid the detrimental effects of electron backscattering however, the substrates had to be carbon foils about 100 Å thick (2,3). X-ray lithography using the very soft radiation in the range 10 - 50 Å avoids the problem of backscattering and thus permits one to replicate on semi-infinite substrates patterns with linewidths of the order of 1000 Å and less, and in addition provides means for controlling cross-sectional profiles. X-radiation in the range 4-10 Å on the other hand is appropriate for replicating patterns in the linewidth range above about 3000 Å, and thus is most appropriate for microelectronic applications (4 - 6).


Sign in / Sign up

Export Citation Format

Share Document