Floatation and control of granular sludge in a high-rate anammox reactor

2010 ◽  
Vol 44 (11) ◽  
pp. 3321-3328 ◽  
Author(s):  
Jianwei Chen ◽  
Qixing Ji ◽  
Ping Zheng ◽  
Tingting Chen ◽  
Caihua Wang ◽  
...  
Endocrinology ◽  
2002 ◽  
Vol 143 (5) ◽  
pp. 1594-1601 ◽  
Author(s):  
I. Kalajzic ◽  
J. Terzic ◽  
Z. Rumboldt ◽  
K. Mack ◽  
A. Naprta ◽  
...  

Abstract This work examines the cellular pathophysiology associated with the weakened bone matrix found in a murine model of osteogenesis imperfecta murine (oim). Histomorphometric analysis of oim/oim bone showed significantly diminished bone mass, and the osteoblast and osteoclast histomorphometric parameters were increased in the oim/oim mice, compared with wild-type (+/+) mice. To assess osteoblast activity, a rat Col1a1 promoter linked to the chloramphenicol acetyltransferase reporter transgene was bred into the oim model. At 8 d and 1 month of age, no difference in transgene activity between oim and control mice was observed. However, at 3 months of age, chloramphenicol acetyl transferase activity was elevated in oim/oim;Tg/Tg, compared with +/+;Tg/Tg and oim/+;Tg/Tg. High levels of urinary pyridinoline crosslinks in the oim/oim;Tg/Tg mice were present at all ages, reflecting continuing high bone resorption. Our data portray a state of ineffective osteogenesis in which the mutant mouse never accumulates a normal quantity of bone matrix. However, it is only after the completion of the rapid growth phase that the high activity of the oim/oim osteoblast can compensate for the high rate of bone resorption. This relationship between bone formation and resorption may explain why the severity of osteogenesis imperfecta decreases after puberty is completed. The ability to quantify high bone turnover and advantages of using a transgene that reflects osteoblast lineage activity make this a useful model for studying interventions designed to improve the bone strength in osteogenesis imperfecta.


Author(s):  
Geoffrey Pires ◽  
Dominique Leitner ◽  
Eleanor Drummond ◽  
Evgeny Kanshin ◽  
Shruti Nayak ◽  
...  

AbstractEpilepsy is a common neurological disorder affecting over 70 million people worldwide, with a high rate of pharmaco-resistance, diverse comorbidities including progressive cognitive and behavioral disorders, and increased mortality from direct (e.g., Sudden Unexpected Death in Epilepsy [SUDEP], accidents, drowning) or indirect effects of seizures and therapies. Extensive research with animal models and human studies provides limited insights into the mechanisms underlying seizures and epileptogenesis, and these have not translated into significant reductions in pharmaco-resistance, morbidities or mortality. To help define changes in molecular signaling networks associated with epilepsy, we examined the proteome of brain samples from epilepsy and control cases. Label-free quantitative mass spectrometry (MS) was performed on the hippocampal CA1-3 region, frontal cortex, and dentate gyrus microdissected from epilepsy and control cases (n=14/group). Epilepsy cases had significant differences in the expression of 777 proteins in the hippocampal CA1-3 region, 296 proteins in the frontal cortex, and 49 proteins in the dentate gyrus in comparison to control cases. Network analysis showed that proteins involved in protein synthesis, mitochondrial function, G-protein signaling, and synaptic plasticity were particularly altered in epilepsy. While protein differences were most pronounced in the hippocampus, similar changes were observed in other brain regions indicating broad proteomic abnormalities in epilepsy. Among the most significantly altered proteins, G-protein Subunit Beta 1 (GNB1) was one of the most significantly decreased proteins in epilepsy in all regions studied, highlighting the importance of G-protein subunit signaling and G-protein–coupled receptors (GPCRs) in epilepsy. Our results provide insights into the molecular mechanisms underlying epilepsy, which may allow for novel targeted therapeutic strategies.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 601-605 ◽  
Author(s):  
H.-S. Shin ◽  
K.-H. Lim ◽  
H.-S. Park

Aerobic upflow sludge blanket(AUSB) process is a new biological wastewater treatment method applying the concept of the self-immobilization to activated sludge. Two sets of AUSB system with different mixing velocities of 3 rpm(R1) and 6 rpm(R2) were operated for high-rate treatment of synthetic wastewater. The COD removal efficiency in R2 was higher than R1 at the same loading rate up to 7 kg/m3·day. However, in R1, the sludge bulking was observed at the end of the experiment. The chocolate colored granules were formed about 5 days after the start-up. The morphological study on the granular sludge consortia was made with both scanning electron and optical microscopes. The granules were 0.5-2.5 mm in diameter and mainly consisted of bacteria with pili-like appendages and filamentous bacteria, which were thought to be Sphaerotilus natans and Beggiatoa. In R1, the long multicellular filaments causing bulking were prevalent in the granule, while in R2 overgrowth of filamentous bacteria was prevented with appropriate shear stress resulting in higher MLSS density. Experimental results indicated that granulation could be controlled by physical stress on granular sludge.


2015 ◽  
Vol 112 (11) ◽  
pp. 2248-2255 ◽  
Author(s):  
J. Tamis ◽  
B.M. Joosse ◽  
M.C.M.van Loosdrecht ◽  
R. Kleerebezem

2020 ◽  
Vol 186 ◽  
pp. 109579 ◽  
Author(s):  
Sheng-Qiang Fan ◽  
Guo-Jun Xie ◽  
Yang Lu ◽  
Bing-Feng Liu ◽  
De-Feng Xing ◽  
...  

2003 ◽  
Vol 27 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Stephen W. Fraedrich ◽  
L. David Dwinell

Abstract The use of dazomet as a fall and spring fumigant for pine seedling production and control of soilborne pests was evaluated at two southern nurseries. Dazomet was applied at low (280–325 kg/ha) and high (493–560 kg/ha) rates and incorporated with a rototiller or spading machine. Comparisons were made with methyl bromide/chloropicrin (MBC) fumigation and nonfumigated control treatments. Dazomet incorporation method had no effect on seedling density at either nursery, and often did not affect seedling morphological characteristics. At the Georgia (GA) nursery, seedling density and morphological characteristics did not differ among fumigant treatments except in the spring study area where shoot weight was greater in the MBC treatment than the dazomet or nonfumigated control treatments. In the fall study area at the North Carolina (NC) nursery, seedling density was greater in the high-rate dazomet treatment than the nonfumigated control. Seedlings were generally larger in MBC and dazomet treatments than the control. Seedling density and morphological characteristics did not differ among fumigation treatments in the spring study area. Fumigation with MBC or dazomet generally reduced the percentage of roots withPythium andFusarium spp. compared to controls at the GA nursery and the fall fumigation area in the NC nursery. Plant parasitic nematodes were found infrequently at both nurseries and did not differ among treatments. Nutsedge (Cyperus spp.) was the major problem at the GA nursery and was effectively controlled only with MBC. Compared to the MBC treatment, the abundance of soilborne fungi and the association of certain types ofTrichoderma with roots was often lower in the dazomet treatments. The importance of these differences for long term seedling production and management of soilborne diseases is not known at this time. South. J. Appl. For. 27(1):41–51.


2019 ◽  
Vol 302 ◽  
pp. 01019
Author(s):  
Łukasz Muślewski ◽  
Roman Zinko ◽  
Oleg Polishchuk

Complex of remote diagnostics and control of an automobile’s nodes enables to remotely control the state of vehicle’s nodes and diagnose malfunctions; control ecological norms and compliance with traffic regulations. Its implementation will allow diagnostics of intermittent malfunctions due to application of the proposed methods of remote diagnostics of an automobile’s nodes as well as to reduce terms of diagnostics significantly due to application of intellectual system of malfunctions detection and due to possibility to control parameters in real time mode. Implementation of the complex will cut unforeseen idle time of vehicles due to preventive control of the tendencies in nodes parameters changes, and due to executing modern repair or replacement of nodes and units. The complex grants safe local and remote access to data and reports by using WebPortal and VPN technologies with possibility to appoint personal right to every user. Due to application of the elaborated methods and the complex that implements it, one can achieve high rate of economic efficiency due to collection of statistic information under conditions of actual exploitation, diagnostics of emerging malfunctions of various difficulty degrees, and making necessary corrections in the structure of an automobile’s nodes prior to serial production launch.


1986 ◽  
Vol 18 (12) ◽  
pp. 99-108 ◽  
Author(s):  
Gatze Lettinga ◽  
Look Hulshoff Pol

Of the high rate anaerobic wastewater treatment systems the UASB (Upflow Anaerobic Sludge Blanket) reactor has found the widest application. Therefore the attention with respect to design, operation and economy will be focussed on this reactor type. In designing a UASB reactor specific attention is needed for the GSS (Gas-Solids Separator) device and the feed inlet system. For soluble wastewater generally no phase separation is required. Only for wastewaters high in suspended solids pre-acidification in a separate acidification reactor can be beneficial. Increasing attention is given to the development of modified UASB systems, such as a combination of a sludge bed reactor and an anaerobic filter. Other possible modified UASB systems may be found in a FS (Floating Settling) UASB reactor, the EGSB (Expanded Granular Sludge Bed) reactor and the UASB IC (Internal Circulation) reactor. As many factors are involved in the costs of a UASB reactor, only some rough data on reactor costs are presented.


2020 ◽  
Vol 367 (11) ◽  
Author(s):  
Hripsime Petrosyan ◽  
Liana Vanyan ◽  
Satenik Mirzoyan ◽  
Armen Trchounian ◽  
Karen Trchounian

ABSTRACT After brewing roasted coffee, spent coffee grounds (SCGs) are generated being one of the daily wastes emerging in dominant countries with high rate and big quantity. Escherichia coli BW25113 wild-type strain, mutants with defects in hydrogen (H2)-producing/oxidizing four hydrogenases (Hyd) (ΔhyaB ΔhybC, ΔhycE, ΔhyfG) and septuple mutant (ΔhyaB ΔhybC ΔhycA ΔfdoG ΔldhA ΔfrdC ΔaceE) were investigated by measuring change of external pH, bacterial growth and H2 production during the utilization of SCG hydrolysate. In wild type, H2 was produced with rate of 1.28 mL H2 (g sugar)−1 h−1 yielding 30.7 mL H2 (g sugar)−1 or 2.75 L (kg SCG)−1 during 24 h. In septuple mutant, H2 production yield was 72 mL H2 (g sugar)−1 with rate of 3 mL H2 (g sugar)−1 h−1. H2 generation was absent in hycE single mutant showing the main role of Hyd-3 in H2 production. During utilization of SCG wild type, specific growth rate was 0.72 ± 0.01 h−1 with biomass yield of 0.3 g L−1. Genetic modifications and control of external parameters during growth could lead to prolonged and enhanced microbiological H2 production by organic wastes, which will aid more efficiently global sustainable energy needs resulting in diversification of mobile and fixed energy sources.


2012 ◽  
Vol 123 ◽  
pp. 312-317 ◽  
Author(s):  
Hui-feng Lu ◽  
Ping Zheng ◽  
Qi-xing Ji ◽  
Hong-tao Zhang ◽  
Jun-yuan Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document