M cell–targeting strategy enhances systemic and mucosal immune responses induced by oral administration of nuclease-producing L. lactis

2018 ◽  
Vol 102 (24) ◽  
pp. 10703-10711 ◽  
Author(s):  
Keita Takahashi ◽  
Ayumu Yano ◽  
Shiori Watanabe ◽  
Philippe Langella ◽  
Luis G. Bermúdez-Humarán ◽  
...  
2013 ◽  
Vol 25 (11) ◽  
pp. 623-632 ◽  
Author(s):  
Sae-Hae Kim ◽  
Dae-Im Jung ◽  
In-Young Yang ◽  
Sun-Hee Jang ◽  
Ju Kim ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2036
Author(s):  
Fudong Zhang ◽  
Zhongwang Zhang ◽  
Xian Li ◽  
Jiahao Li ◽  
Jianliang Lv ◽  
...  

Foot and mouth disease virus (FMDV), whose transmission occurs through mucosal surfaces, can also be transmitted through aerosols, direct contact, and pollutants. Therefore, mucosal immunity can efficiently inhibit viral colonization. Since vaccine material delivery into immune sites is important for efficient oral mucosal vaccination, the M cell-targeting approach is important for effective vaccination given M cells are vital for luminal antigen influx into the mucosal lymph tissues. In this study, we coupled M cell-targeting ligand Co1 to multi-epitope TB1 of FMDV to obtain TB1-Co1 in order to improve delivery efficiency of the multi-epitope protein antigen TB1. Lactococcus lactis (L. lactis) was engineered to express heterologous antigens for applications as vaccine vehicles with the ability to elicit mucosal as well as systemic immune responses. We successfully constructed L. lactis (recombinant) with the ability to express multi-epitope antigen proteins (TB1 and TB1-Co1) of the FMDV serotype A (named L. lactis-TB1 and L. lactis-TB1-Co1). Then, we investigated the immunogenic potential of the constructed recombinant L. lactis in mice and guinea pigs. Orally administered L. lactis-TB1 as well as L. lactis-TB1-Co1 in mice effectively induced mucosal secretory IgA (SIgA) and IgG secretion, development of a strong cell-mediated immune reactions, substantial T lymphocyte proliferation in the spleen, and upregulated IL-2, IFN-γ, IL-10, and IL-5 levels. Orally administered ligand-conjugated TB1 promoted specific IgG as well as SIgA responses in systemic and mucosal surfaces, respectively, when compared to orally administered TB1 alone. Then, guinea pigs were orally vaccinated with L. lactis-TB1-Co1 plus adjuvant CpG-ODN at three different doses, L. lactis-TB1-Co1, and PBS. Animals that had been immunized with L. lactis-TB1-Co1 plus adjuvant CpG-ODN and L. lactis-TB1-Co1 developed elevated antigen-specific serum IgG, IgA, neutralizing antibody, and mucosal SIgA levels, when compared to control groups. Particularly, in mice, L. lactis-TB1-Co1 exhibited excellent immune effects than L. lactis-TB1. Therefore, L. lactis-TB1-Co1 can induce elevations in mucosal as well as systemic immune reactions, and to a certain extent, provide protection against FMDV. In conclusion, M cell-targeting approaches can be employed in the development of effective oral mucosa vaccines for FMDV.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Jialu Wang ◽  
Lulu Huang ◽  
Chunxiao Mou ◽  
En Zhang ◽  
Yongheng Wang ◽  
...  

Abstract Porcine epidemic diarrhea (PED) is a highly contagious disease in newborn piglets and causes substantial economic losses in the world. PED virus (PEDV) spreads by fecal–oral contact and can be prevented by oral immunization. Therefore, it is necessary to develop an effective oral vaccine against PEDV infection. Currently, Bacillus subtilis as recombinant vaccine carrier has been used for antigen delivery and proved well in immune effect and safety. The present study evaluated the immunogenicity of recombinant Bacillus subtilis (B. subtilis-RC) in piglets via oral administration. After oral immunization in piglets, B. subtilis-RC significantly increased the local mucosal immune responses. Oral administration with B. subtilis-RC significantly improved the level of specific mucosal immunoglobulin A (IgA) antibodies against PEDV infection, through enlarging the area of Peyer’s patches (PPs) and increasing the number of ileum IgA+ secreting (SIgA) cells. In the meantime, B. subtilis-RC remarkably increased the number of intraepithelial lymphocytes (IELs). We also observed that oral administration of B. subtilis-RC significantly increased CD3+T lymphocytes’ numbers and up-regulated the ratio of CD4+/CD8+ T cells. Furthermore, high titers of specific serum immunoglobulin G (IgG) revealed satisfactory systemic immune response against PEDV infection. In summary, our study demonstrated that oral administration of B. subtilis-RC could trigger a high level of local and systemic immune responses and would be a promising candidate vaccine against PEDV infection in piglets.


1993 ◽  
Vol 36 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Yoshimine Fujii ◽  
Yukihiko Aramaki ◽  
Toshifumi Hara ◽  
Kiyoto Yachi ◽  
Hiroshi Kikuchi ◽  
...  

2010 ◽  
Vol 185 (10) ◽  
pp. 5787-5795 ◽  
Author(s):  
Sae-Hae Kim ◽  
Ki-Weon Seo ◽  
Ju Kim ◽  
Kyung-Yeol Lee ◽  
Yong-Suk Jang

2019 ◽  
Vol 216 (4) ◽  
pp. 831-846 ◽  
Author(s):  
Shunsuke Kimura ◽  
Nobuhide Kobayashi ◽  
Yutaka Nakamura ◽  
Takashi Kanaya ◽  
Daisuke Takahashi ◽  
...  

Microfold (M) cells residing in the follicle-associated epithelium (FAE) of the gut-associated lymphoid tissue are specialized for antigen uptake to initiate mucosal immune responses. The molecular machinery and biological significance of M cell differentiation, however, remain to be fully elucidated. Here, we demonstrate that Sox8, a member of the SRY-related HMG box transcription factor family, is specifically expressed by M cells in the intestinal epithelium. The expression of Sox8 requires activation of RANKL-RelB signaling. Chromatin immunoprecipitation and luciferase assays revealed that Sox8 directly binds the promoter region of Gp2 to increase Gp2 expression, which is the hallmark of functionally mature M cells. Furthermore, genetic deletion of Sox8 causes a marked decrease in the number of mature M cells, resulting in reduced antigen uptake in Peyer’s patches. Consequently, juvenile Sox8-deficient mice showed attenuated germinal center reactions and antigen-specific IgA responses. These findings indicate that Sox8 plays an essential role in the development of M cells to establish mucosal immune responses.


Sign in / Sign up

Export Citation Format

Share Document