Enhanced antitumor activity of a combination treatment with a mouse/human chimeric anti-MK-1 antibody and lymphokine-activated killer cells in vitro and in a severe combined immunodeficient mouse xenograft model

1999 ◽  
Vol 48 (4) ◽  
pp. 165-171 ◽  
Author(s):  
Takafumi Yamamoto ◽  
Fumiko Arakawa ◽  
Ken Nakamura ◽  
Tarumi Senba ◽  
Yoshihiro Tomita ◽  
...  
2009 ◽  
Vol 32 (5) ◽  
pp. 781-787 ◽  
Author(s):  
Hwan Mook Kim ◽  
Jong Soon Kang ◽  
Jaeseung Lim ◽  
Jee Youn Kim ◽  
Yeon Jin Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeerati Prompipak ◽  
Thanaset Senawong ◽  
Banchob Sripa ◽  
Albert J. Ketterman ◽  
Suppawit Utaiwat ◽  
...  

AbstractApplication of 5-fluorouracil (5-FU) in cholangiocarcinoma (CCA) is limited by adverse side effects and chemoresistance. Therefore, the combination therapy of 5-FU with other substances, especially natural products may provide a new strategy for CCA treatment. The aim of this study was to evaluate the combination effects of 5-FU and two ethanolic extracts of Thai noni juice (TNJ) products on CCA cell lines and nude mice xenografts. The results of antiproliferative assay showed the combination treatment of 5-FU and each TNJ ethanolic extract exerted more cytotoxicity on CCA cells than either single agent treatment. Synergistic effects of drug combinations can enable the dose reduction of 5-FU. The mechanism underlying a combination treatment was apoptosis induction through an activation of p53 and Bax proteins. In the nude mouse xenograft model, combination treatments of 5-FU with each TNJ ethanolic extract suppressed the growth of CCA cells implanted mice more than single agent treatments with no effects on mouse body weight, kidney, and spleen. Moreover, low doses of TNJ ethanolic extracts reduced the hepatotoxicity of 5-FU in nude mice. Taken together, these data suggested that the ethanolic extracts of TNJ products can enhance the anti-CCA effect and reduce toxicity of 5-FU.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2007 ◽  
Vol 143 (1) ◽  
pp. 132-135
Author(s):  
O. S. Zhukova ◽  
O. V. Lebedinskaya ◽  
I. Zh. Shubina ◽  
G. K. Gerasimova ◽  
A. M. Karamzin ◽  
...  

2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Magdalena Wiktorska ◽  
Izabela Sacewicz-Hofman ◽  
Olga Stasikowska-Kanicka ◽  
Marian Danilewicz ◽  
Jolanta Niewiarowska

Receptors of the β1 integrin family are involved in many tumor-promoting activities. There are several approaches currently used to control integrin activity, and thus to potentially restrain tumor metastasis and angiogenesis. In this study, we compared inhibitory efficiencies of siRNA and DNAzymes against the β1 integrin subunit (DEβ1), in a mouse xenograft model. Both inhibitors were used under their most favorable conditions, in terms of concentrations, incubation time and lack of cytotoxic effects. Transfection of siRNAβ1 or DEβ1 remarkably inhibited the growth of both PC3 and HT29 colon cancer cells in vitro, and decreased their capability of initiating tumor formation in the mouse xenograft model. siRNAβ1 appeared to be slightly more efficient than DEβ1 when tested in vitro, however it was comparably less proficient in blocking the tumor growth in vivo. We conclude the DNAzyme, due to its greater resistance to degradation in extra- and intracellular compartments, to be a superior inhibitor of tumor growth in long lasting experiments in vivo when compared to siRNA, while the latter seems to be more efficient in blocking β1 expression during in vitro experiments using cell cultures.


2015 ◽  
Vol 33 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Justyna Mikuła-Pietrasik ◽  
Patrycja Sosińska ◽  
Eryk Naumowicz ◽  
Konstantin Maksin ◽  
Hanna Piotrowska ◽  
...  

Cytotherapy ◽  
2013 ◽  
Vol 15 (10) ◽  
pp. 1297-1306 ◽  
Author(s):  
Melissa A. Geller ◽  
David A. Knorr ◽  
David A. Hermanson ◽  
Lee Pribyl ◽  
Laura Bendzick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document