Niche partitioning among social clusters of a resident estuarine apex predator

2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Krista Nicholson ◽  
Lars Bejder ◽  
Neil Loneragan
2021 ◽  
Author(s):  
◽  
Rachel Selwyn

<p>Borneo’s rainforests are experiencing some of the fastest deforestation rates worldwide and are home to increasingly vulnerable species, most of which remain poorly understood. Bornean rainforests exhibit dramatic fluctuations in fruit and seed availability during mast-fruiting events which can exert considerable influence on frugivore ecology. Comprehensive spatiotemporal assessments of habitat use, resource partitioning, and responses to fruit availability in mast-fruiting rainforests are lacking for most species, including ungulates. The distribution and habitat use of an apex predator, the Sunda clouded leopard (Neofelis diardi), may be largely shaped by the availability of these ungulates. Yet, factors driving the spatial ecology of this elusive felid remain uncertain. I aimed to quantify spatiotemporal habitat use dynamics of these species and consequently inform effective conservation planning. Specifically, I quantified the effects of human activity, forest type, elevation, and mast-induced fluctuations in resources on the habitat use of lesser mousedeer (Tragulus kanchil), greater mousedeer (T. napu), Bornean yellow muntjacs (Muntiacus atherodes), red muntjacs (M. muntjak), and bearded pigs (Sus barbatus) in Gunung Palung National Park, West Kalimantan, Indonesian Borneo. I applied data from an extensive camera trapping study (n = 42,610 trap nights) to a modified single-season occupancy model to evaluate habitat use over space and time. I then applied estimates of occurrence (Ψ) of the five ungulate species to quantify if habitat use of the Sunda clouded leopard was influenced by prey occurrence and thus if this apex predator responded to bottom-up effects of resource variability. The results from the ungulate modelling revealed that forest type was an important predictor of habitat use of all ungulate species, each preferring different forest habitats. Habitat use estimates were highest in peat swamp forests for lesser mousedeer (Ψ = 0.92 ± 0.05), alluvial bench forests for greater mousedeer (Ψ = 0.52 ± 0.08), lowland granite forests for yellow (Ψ = 0.95 ± 0.07) and red muntjacs (Ψ = 0.98 ± 0.09), and freshwater swamp forests for bearded pigs (Ψ = 0.84 ± 0.07). Bearded pigs exhibited a link between variation in fruit availability and habitat use, indicating an ability to respond to resource variability. Occupancy modelling for Sunda clouded leopards revealed forest type, fruit availability, and bearded pig occurrence as the best predictors of habitat use. The highest estimates were associated with lowland granite forests (Ψ = 0.87 ± 0.09). My results reveal a novel pattern of niche partitioning through both food and habitat resources among five sympatric ungulate species and demonstrate that Sunda clouded leopards may use fruiting events as a cue for abundant prey. My research sheds light on important factors influencing habitat use of understudied ungulates and an apex predator and can be used to refine estimates of habitat suitability across a greater landscape to inform conservation practice amidst continually shrinking remnant forests in Indonesian Borneo.</p>


2021 ◽  
Author(s):  
◽  
Rachel Selwyn

<p>Borneo’s rainforests are experiencing some of the fastest deforestation rates worldwide and are home to increasingly vulnerable species, most of which remain poorly understood. Bornean rainforests exhibit dramatic fluctuations in fruit and seed availability during mast-fruiting events which can exert considerable influence on frugivore ecology. Comprehensive spatiotemporal assessments of habitat use, resource partitioning, and responses to fruit availability in mast-fruiting rainforests are lacking for most species, including ungulates. The distribution and habitat use of an apex predator, the Sunda clouded leopard (Neofelis diardi), may be largely shaped by the availability of these ungulates. Yet, factors driving the spatial ecology of this elusive felid remain uncertain. I aimed to quantify spatiotemporal habitat use dynamics of these species and consequently inform effective conservation planning. Specifically, I quantified the effects of human activity, forest type, elevation, and mast-induced fluctuations in resources on the habitat use of lesser mousedeer (Tragulus kanchil), greater mousedeer (T. napu), Bornean yellow muntjacs (Muntiacus atherodes), red muntjacs (M. muntjak), and bearded pigs (Sus barbatus) in Gunung Palung National Park, West Kalimantan, Indonesian Borneo. I applied data from an extensive camera trapping study (n = 42,610 trap nights) to a modified single-season occupancy model to evaluate habitat use over space and time. I then applied estimates of occurrence (Ψ) of the five ungulate species to quantify if habitat use of the Sunda clouded leopard was influenced by prey occurrence and thus if this apex predator responded to bottom-up effects of resource variability. The results from the ungulate modelling revealed that forest type was an important predictor of habitat use of all ungulate species, each preferring different forest habitats. Habitat use estimates were highest in peat swamp forests for lesser mousedeer (Ψ = 0.92 ± 0.05), alluvial bench forests for greater mousedeer (Ψ = 0.52 ± 0.08), lowland granite forests for yellow (Ψ = 0.95 ± 0.07) and red muntjacs (Ψ = 0.98 ± 0.09), and freshwater swamp forests for bearded pigs (Ψ = 0.84 ± 0.07). Bearded pigs exhibited a link between variation in fruit availability and habitat use, indicating an ability to respond to resource variability. Occupancy modelling for Sunda clouded leopards revealed forest type, fruit availability, and bearded pig occurrence as the best predictors of habitat use. The highest estimates were associated with lowland granite forests (Ψ = 0.87 ± 0.09). My results reveal a novel pattern of niche partitioning through both food and habitat resources among five sympatric ungulate species and demonstrate that Sunda clouded leopards may use fruiting events as a cue for abundant prey. My research sheds light on important factors influencing habitat use of understudied ungulates and an apex predator and can be used to refine estimates of habitat suitability across a greater landscape to inform conservation practice amidst continually shrinking remnant forests in Indonesian Borneo.</p>


2020 ◽  
Author(s):  
Andreza Lautenschleger ◽  
Jeferson Vizentin‐Bugoni ◽  
Lis B. Cavalheiro ◽  
Cristiano A. Iserhard
Keyword(s):  

2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Mariia Pavlovska ◽  
Ievgeniia Prekrasna ◽  
Evgen Dykyi ◽  
Andrii Zotov ◽  
Artem Dzhulai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suresh A. Singh ◽  
Armin Elsler ◽  
Thomas L. Stubbs ◽  
Russell Bond ◽  
Emily J. Rayfield ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 155
Author(s):  
Daniel Escoriza ◽  
Félix Amat

South-western Europe has a rich diversity of lacertid lizards. In this study, we evaluated the occupancy patterns and niche segregation of five species of lacertids, focusing on large-bodied species (i.e., adults having >75 mm snout-vent length) that occur in south-western Europe (Italian to the Iberian Peninsula). We characterized the niches occupied by these species based on climate and vegetation cover properties. We expected some commonality among phylogenetically related species, but also patterns of habitat segregation mitigating competition between ecologically equivalent species. We used multivariate ordination and probabilistic methods to describe the occupancy patterns and evaluated niche evolution through phylogenetic analyses. Our results showed climate niche partitioning, but with a wide overlap in transitional zones, where segregation is maintained by species-specific responses to the vegetation cover. The analyses also showed that phylogenetically related species tend to share large parts of their habitat niches. The occurrence of independent evolutionary lineages contributed to the regional species richness favored by a long history of niche divergence.


Sign in / Sign up

Export Citation Format

Share Document