subtropical front
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 40 (2) ◽  
pp. 175-193
Author(s):  
Frida S. Hoem ◽  
Isabel Sauermilch ◽  
Suning Hou ◽  
Henk Brinkhuis ◽  
Francesca Sangiorgi ◽  
...  

Abstract. Improvements in our capability to reconstruct ancient surface-ocean conditions based on organic-walled dinoflagellate cyst (dinocyst) assemblages from the Southern Ocean provide an opportunity to better establish past position, strength and oceanography of the subtropical front (STF). Here, we aim to reconstruct the late Eocene to early Miocene (37–20 Ma) depositional and palaeoceanographic history of the STF in the context of the evolving Tasmanian Gateway as well as the potential influence of Antarctic circumpolar flow and intense waxing and waning of ice. We approach this by combining information from seismic lines (revisiting existing data and generating new marine palynological data from Ocean Drilling Program (ODP) Hole 1168A) in the western Tasmanian continental slope. We apply improved taxonomic insights and palaeoecological models to reconstruct the sea surface palaeoenvironmental evolution. Late Eocene–early Oligocene (37–30.5 Ma) assemblages show a progressive transition from dominant terrestrial palynomorphs and inner-neritic dinocyst taxa as well as cysts produced by heterotrophic dinoflagellates to predominantly outer-neritic/oceanic autotrophic taxa. This transition reflects the progressive deepening of the western Tasmanian continental margin, an interpretation supported by our new seismic investigations. The dominance of autotrophic species like Spiniferites spp. and Operculodinium spp. reflects relatively oligotrophic conditions, like those of regions north of the modern-day STF. The increased abundance in the earliest Miocene of Nematosphaeropsis labyrinthus, typical for modern subantarctic zone (frontal) conditions, indicates a cooling and/or closer proximity of the STF to the site . The absence of major shifts in dinocyst assemblages contrasts with other records in the region and suggests that small changes in surface oceanographic conditions occurred during the Oligocene. Despite the relatively southerly (63–55∘ S) location of Site 1168, the rather stable oceanographic conditions reflect the continued influence of the proto-Leeuwin Current along the southern Australian coast as Australia continued to drift northward. The relatively “warm” dinocyst assemblages at ODP Site 1168, compared with the cold assemblages at Antarctic Integrated Ocean Drilling Program (IODP) Site U1356, testify to the establishment of a pronounced latitudinal temperature gradient in the Oligocene Southern Ocean.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joanna K. Cooper ◽  
Andrew R. Gorman ◽  
M. Hamish Bowman ◽  
Robert O. Smith

Seismic oceanography generally makes use of multi-channel seismic reflection data sourced by air gun arrays and long hydrophone streamers to image oceanographic water masses and processes—often piggybacking on surveys that target deeper geological features below the seafloor. However, due to the acquisition methods employed, shallow (upper 200 m or so) regions of the ocean can be poorly imaged with this technique, and resolution is often lower than desirable for imaging fine-structure within the water column. In 2012, we collected a set of higher-resolution seismic lines off the southeast coast of New Zealand, with a generator-injector airgun source and hydrophone streamer configuration designed to improve images of shallower water masses and their boundaries. The seismic lines were acquired with coincident expendable bathythermograph deployments which provides direct ties between physical oceanographic data and seismic data, allowing for definitive identification of the Subtropical Front and associated water masses in the subsurface. Repeat acquisition along the same transect shows significant temporal variability on the scale of hours, illustrating the highly dynamic nature of this important ocean boundary. Comparisons to conventional low-frequency seismic data in the same location show the value of high-resolution acquisition methods in imaging the near-surface of the ocean and allowing subsurface features to be linked to their expressions at the surface.


2021 ◽  
pp. 102056
Author(s):  
B. Nirmal ◽  
K. Mohan ◽  
M. Prakasam ◽  
Aradhna Tripati ◽  
P. Graham Mortyn ◽  
...  

Author(s):  
Alejandra Cartagena‐Sierra ◽  
Melissa A. Berke ◽  
Rebecca S. Robinson ◽  
Basia Marcks ◽  
Isla S. Castañeda ◽  
...  

Author(s):  
Eric Kunze ◽  
John B. Mickett ◽  
James B. Girton

AbstractDestratification and restratification of a ~50-m thick surface boundary layer in the North Pacific Subtropical Front are examined during 24-31 March 2017 in the wake of a storm using a ~ 5-km array of 23 chi-augmented EM profiling floats (u, v, T, S, χT), as well as towyo and ADCP ship surveys, shipboard air-sea surface fluxes and parameterized shortwave penetrative radiation. During the first four days, nocturnal destabilizing buoyancy-fluxes mixed the surface layer over almost its full depth every night followed by restratification to N ~ 2 × 10–3 rad s–1 during daylight. Starting on 28 March, nocturnal destabilizing buoyancy-fluxes weakened because weakening winds reduced the latent heat-flux. Shallow mixing and stratified transition layers formed above ~20-m depth. The remnant layer in the lower part of the surface layer was insulated from destabilizing surface forcing. Penetrative radiation, turbulent buoyancy-fluxes and horizontal buoyancy advection all contribute to restratification of this remnant layer, closing the budget to within measurement uncertainties. Buoyancy advective restratification (slumping) plays a minor role. Before 28 March, measured advective restratification ∫(uzbx + vzby)dt is confined to daytime, is often destratifying and is much stronger than predictions of geostrophic adjustment, mixed-layer eddy instability and Ekman buoyancy-flux predictions because of storm-forced inertial shear. Starting on 28 March, the subinertial envelope of measured buoyancy advective restratification in the remnant layer resembles MLE parameterization predictions.


2021 ◽  
Author(s):  
Haibo Hu ◽  
Zhao Yihang ◽  
Ning Zhang ◽  
Haokun Bai ◽  
Feifei Chen

Abstract Multiple oceanic eddies coexist in the North Pacific subtropical front zone (STFZ) in winter, which can be classified into the isolated single eddies (ISO), the combined double isotropic eddies (DBL) and pairs of anisotropic eddies (PAIR). The forcings of these eddies on the mid-latitude atmosphere are investigated using Climate Forecast System Reanalysis (CFSR) data from year 1979 to 2009, which are divided into the remote and local effects in this research. In the stronger STFZ years,there are more ISO and DBL cyclonic eddies to the north but more ISO and DBL anticyclonic eddies to the south of the STFZ, meanwhile more PAIR eddies with cold to the north and warm to the south concentrated around the main axis of the STFZ. These eddy distributions enhance the strength of STFZ, intensify the propagation of upwards baroclinic waves in the lower atmosphere, and finally enhance the zonal wind at upper atmosphere, which is defined as the remote effects of the eddies. However, distinct from this basin-scale remote forcings, three types of oceanic eddies also have different local forcings on the maritime atmospheric boundary layer (MABL) over these eddies. The local effects of the ISO and DBL eddies on MABL entirely depend on the numbers and polarity of the eddy center, while the MABL response to the PAIR eddies appears at the boundary of the two eddies. Furthermore, the local effects of the three types of eddies can be traced to the middle atmosphere accompanied by local precipitation differences.


Sign in / Sign up

Export Citation Format

Share Document