freshwater swamp
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 51)

H-INDEX

16
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12597
Author(s):  
Alice M. Clement ◽  
Richard Cloutier ◽  
Jing Lu ◽  
Egon Perilli ◽  
Anton Maksimenko ◽  
...  

Background The megalichthyids are one of several clades of extinct tetrapodomorph fish that lived throughout the Devonian–Permian periods. They are advanced “osteolepidid-grade” fishes that lived in freshwater swamp and lake environments, with some taxa growing to very large sizes. They bear cosmine-covered bones and a large premaxillary tusk that lies lingually to a row of small teeth. Diagnosis of the family remains controversial with various authors revising it several times in recent works. There are fewer than 10 genera known globally, and only one member definitively identified from Gondwana. Cladarosymblema narrienense Fox et al. 1995 was described from the Lower Carboniferous Raymond Formation in Queensland, Australia, on the basis of several well-preserved specimens. Despite this detailed work, several aspects of its anatomy remain undescribed. Methods Two especially well-preserved 3D fossils of Cladarosymblema narrienense, including the holotype specimen, are scanned using synchrotron or micro-computed tomography (µCT), and 3D modelled using specialist segmentation and visualisation software. New anatomical detail, in particular internal anatomy, is revealed for the first time in this taxon. A novel phylogenetic matrix, adapted from other recent work on tetrapodomorphs, is used to clarify the interrelationships of the megalichthyids and confirm the phylogenetic position of C. narrienense. Results Never before seen morphological details of the palate, hyoid arch, basibranchial skeleton, pectoral girdle and axial skeleton are revealed and described. Several additional features are confirmed or updated from the original description. Moreover, the first full, virtual cranial endocast of any tetrapodomorph fish is presented and described, giving insight into the early neural adaptations in this group. Phylogenetic analysis confirms the monophyly of the Megalichthyidae with seven genera included (Askerichthys, Cladarosymblema, Ectosteorhachis, Mahalalepis, Megalichthys, Palatinichthys, and Sengoerichthys). The position of the megalichthyids as sister group to canowindrids, crownward of “osteolepidids” (e.g.,Osteolepis and Gogonasus), but below “tristichopterids” such as Eusthenopteron is confirmed, but our findings suggest further work is required to resolve megalichthyid interrelationships.


2021 ◽  
Author(s):  
◽  
Rachel Selwyn

<p>Borneo’s rainforests are experiencing some of the fastest deforestation rates worldwide and are home to increasingly vulnerable species, most of which remain poorly understood. Bornean rainforests exhibit dramatic fluctuations in fruit and seed availability during mast-fruiting events which can exert considerable influence on frugivore ecology. Comprehensive spatiotemporal assessments of habitat use, resource partitioning, and responses to fruit availability in mast-fruiting rainforests are lacking for most species, including ungulates. The distribution and habitat use of an apex predator, the Sunda clouded leopard (Neofelis diardi), may be largely shaped by the availability of these ungulates. Yet, factors driving the spatial ecology of this elusive felid remain uncertain. I aimed to quantify spatiotemporal habitat use dynamics of these species and consequently inform effective conservation planning. Specifically, I quantified the effects of human activity, forest type, elevation, and mast-induced fluctuations in resources on the habitat use of lesser mousedeer (Tragulus kanchil), greater mousedeer (T. napu), Bornean yellow muntjacs (Muntiacus atherodes), red muntjacs (M. muntjak), and bearded pigs (Sus barbatus) in Gunung Palung National Park, West Kalimantan, Indonesian Borneo. I applied data from an extensive camera trapping study (n = 42,610 trap nights) to a modified single-season occupancy model to evaluate habitat use over space and time. I then applied estimates of occurrence (Ψ) of the five ungulate species to quantify if habitat use of the Sunda clouded leopard was influenced by prey occurrence and thus if this apex predator responded to bottom-up effects of resource variability. The results from the ungulate modelling revealed that forest type was an important predictor of habitat use of all ungulate species, each preferring different forest habitats. Habitat use estimates were highest in peat swamp forests for lesser mousedeer (Ψ = 0.92 ± 0.05), alluvial bench forests for greater mousedeer (Ψ = 0.52 ± 0.08), lowland granite forests for yellow (Ψ = 0.95 ± 0.07) and red muntjacs (Ψ = 0.98 ± 0.09), and freshwater swamp forests for bearded pigs (Ψ = 0.84 ± 0.07). Bearded pigs exhibited a link between variation in fruit availability and habitat use, indicating an ability to respond to resource variability. Occupancy modelling for Sunda clouded leopards revealed forest type, fruit availability, and bearded pig occurrence as the best predictors of habitat use. The highest estimates were associated with lowland granite forests (Ψ = 0.87 ± 0.09). My results reveal a novel pattern of niche partitioning through both food and habitat resources among five sympatric ungulate species and demonstrate that Sunda clouded leopards may use fruiting events as a cue for abundant prey. My research sheds light on important factors influencing habitat use of understudied ungulates and an apex predator and can be used to refine estimates of habitat suitability across a greater landscape to inform conservation practice amidst continually shrinking remnant forests in Indonesian Borneo.</p>


2021 ◽  
Author(s):  
◽  
Rachel Selwyn

<p>Borneo’s rainforests are experiencing some of the fastest deforestation rates worldwide and are home to increasingly vulnerable species, most of which remain poorly understood. Bornean rainforests exhibit dramatic fluctuations in fruit and seed availability during mast-fruiting events which can exert considerable influence on frugivore ecology. Comprehensive spatiotemporal assessments of habitat use, resource partitioning, and responses to fruit availability in mast-fruiting rainforests are lacking for most species, including ungulates. The distribution and habitat use of an apex predator, the Sunda clouded leopard (Neofelis diardi), may be largely shaped by the availability of these ungulates. Yet, factors driving the spatial ecology of this elusive felid remain uncertain. I aimed to quantify spatiotemporal habitat use dynamics of these species and consequently inform effective conservation planning. Specifically, I quantified the effects of human activity, forest type, elevation, and mast-induced fluctuations in resources on the habitat use of lesser mousedeer (Tragulus kanchil), greater mousedeer (T. napu), Bornean yellow muntjacs (Muntiacus atherodes), red muntjacs (M. muntjak), and bearded pigs (Sus barbatus) in Gunung Palung National Park, West Kalimantan, Indonesian Borneo. I applied data from an extensive camera trapping study (n = 42,610 trap nights) to a modified single-season occupancy model to evaluate habitat use over space and time. I then applied estimates of occurrence (Ψ) of the five ungulate species to quantify if habitat use of the Sunda clouded leopard was influenced by prey occurrence and thus if this apex predator responded to bottom-up effects of resource variability. The results from the ungulate modelling revealed that forest type was an important predictor of habitat use of all ungulate species, each preferring different forest habitats. Habitat use estimates were highest in peat swamp forests for lesser mousedeer (Ψ = 0.92 ± 0.05), alluvial bench forests for greater mousedeer (Ψ = 0.52 ± 0.08), lowland granite forests for yellow (Ψ = 0.95 ± 0.07) and red muntjacs (Ψ = 0.98 ± 0.09), and freshwater swamp forests for bearded pigs (Ψ = 0.84 ± 0.07). Bearded pigs exhibited a link between variation in fruit availability and habitat use, indicating an ability to respond to resource variability. Occupancy modelling for Sunda clouded leopards revealed forest type, fruit availability, and bearded pig occurrence as the best predictors of habitat use. The highest estimates were associated with lowland granite forests (Ψ = 0.87 ± 0.09). My results reveal a novel pattern of niche partitioning through both food and habitat resources among five sympatric ungulate species and demonstrate that Sunda clouded leopards may use fruiting events as a cue for abundant prey. My research sheds light on important factors influencing habitat use of understudied ungulates and an apex predator and can be used to refine estimates of habitat suitability across a greater landscape to inform conservation practice amidst continually shrinking remnant forests in Indonesian Borneo.</p>


2021 ◽  
Vol 40 (4) ◽  
pp. 740-750
Author(s):  
F.O. Aweda ◽  
J.O. Agbolade ◽  
J.A. Oyewole ◽  
M. Sanni

The year in year out variation in atmospheric parameters, solar radiation, and meteorological variables such as ambient temperature, relative humidity RH, wind speed etc, are posies that can be and are used to describe the atmospheric conditions. Ten years of data obtained from the Nigerian Meteorological Agency (NiMet) was analysed. Results showed that solar radiation rises from January to get to its peak in April which is maintained till August before it begins to fall again with the Sudan savanna area (Maiduguri) having a value of (15.70 MJm-2month-1) and freshwater swamp area (Ikeja) having the value of (10.16 MJm-2month-1). The extraterrestrial radiations calculated for the two stations are 333.53 (MJm-2month-1) and 195.53 (MJm-2month-1) respectively. However, the relative humidity of Ikeja (84.54%) is higher as compared to that of Maiduguri (42.23%). The minimum temperature ranges observed for the two stations varies from (22 - 24)0C and (12 - 26)°C, while the maximum temperature was as high as 33°C and 40°C obtained in April for Ikeja and Maiduguri, respectively. Similarly, the average wind speed is higher for Ikeja (4.97m/s) than for Maiduguri (4.62m/s). The result of the statistical correlation reveals that, in Maiduguri, solar radiation was found to have a significant negative relationship with relative humidity (r = -.256, p<0.01) and a significant positive relationship with minimum and maximum temperature (p<0.05). This means that minimum and maximum temperatures increase as solar radiation increases (p<0.05). Relative humidity decreases as solar radiation increases. In Ikeja, solar radiation was found to have a significant negative relationship with relative humidity (r =-.350, p<0.01) and wind speed (r = -146, p<0.05) and significant positive relationship with minimum temperature (r =.410, p<0.05) and maximum temperature (r =.575, p<0.01). In conclusion, the variables like relative humidity, minimum temperature and wind speed are higher in the freshwater swamp area of Nigeria as compared to the Sudan savanna area, while the solar radiation, extraterrestrial radiation and maximum temperature are generally higher in the Sudan savanna area of Nigeria.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Darren Yeo ◽  
Amrita Srivathsan ◽  
Jayanthi Puniamoorthy ◽  
Foo Maosheng ◽  
Patrick Grootaert ◽  
...  

Abstract Background The world’s fast disappearing mangrove forests have low plant diversity and are often assumed to also have a species-poor insect fauna. We here compare the tropical arthropod fauna across a freshwater swamp and six different forest types (rain-, swamp, dry-coastal, urban, freshwater swamp, mangroves) based on 140,000 barcoded specimens belonging to ca. 8500 species. Results We find that the globally imperiled habitat “mangroves” is an overlooked hotspot for insect diversity. Our study reveals a species-rich mangrove insect fauna (>3000 species in Singapore alone) that is distinct (>50% of species are mangrove-specific) and has high species turnover across Southeast and East Asia. For most habitats, plant diversity is a good predictor of insect diversity, but mangroves are an exception and compensate for a comparatively low number of phytophagous and fungivorous insect species by supporting an unusually rich community of predators whose larvae feed in the productive mudflats. For the remaining tropical habitats, the insect communities have diversity patterns that are largely congruent across guilds. Conclusions The discovery of such a sizeable and distinct insect fauna in a globally threatened habitat underlines how little is known about global insect biodiversity. We here show how such knowledge gaps can be closed quickly with new cost-effective NGS barcoding techniques.


Ecosystems ◽  
2021 ◽  
Author(s):  
Weng Ngai Lam ◽  
Pin Jia Chan ◽  
Ying Ying Ting ◽  
Hong Jhun Sim ◽  
Jun Jie Lian ◽  
...  

Author(s):  
Kwek Yan Chong ◽  
Sherry Ming Xuan Hung ◽  
Choon Yen Koh ◽  
Reuben Chong Jin Lim ◽  
Jolyn Weiting Loh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document