Mean fluorescence intensity (MFI) of CD11b on CD34-positive (CD34+) cells derived from granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood (PB) correlate conversely with the total amount of harvested CD34+ cells

2002 ◽  
Vol 81 (8) ◽  
pp. 483-484 ◽  
Author(s):  
N. Masauzi ◽  
D. Miyasaka ◽  
H. Miyoshi ◽  
S. Noto ◽  
T. Matsushima ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 574-580 ◽  
Author(s):  
M Mielcarek ◽  
BA Roecklein ◽  
B Torok-Storb

The ability of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (G-PBMCs) to induce secretion of cytokines in primary long-term marrow cultures (LTC) or in the human marrow stromal cell line HS23 was compared with that of marrow mononuclear cells. Equal numbers of G-PBMCs or marrow mononuclear cells were added to stromal cultures, supernatants were harvested at day 4 and levels of interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-2, IL-6, G-CSF, and tumor necrosis factor alpha (TNF alpha) were determined. G- PBMCs induced 21.4-fold higher levels of IL-6 and 12.5-fold higher levels of G-CSF in LTC cocultures compared with marrow mononuclear cells and induced 20.6-fold more IL-6 and 6.3-fold more G-CSF when added to HS23 cells. Experiments using sorted populations of CD20+, CD3+, and CD14+ cells showed that CD14+ cells within G-PBMCs were responsible for triggering the production of IL-6 and G-CSF. The effect did not require cell-cell contact and was inhibited when neutralizing antibodies to IL-1 alpha and IL-1 beta were used in combination. In these experiments, the greater stimulating ability of G-PBMCs is most likely attributable to the greater number of CD14+ cells in G-PBMCs (26.1+% +/- 2.3%) compared with marrow (2.5% +/- 0.8%), because equal numbers of CD14+ cells sorted from marrow and G-PBMCs showed comparable ability to induce IL-6 and G-CSF when placed directly on stromal cells.


Blood ◽  
2009 ◽  
Vol 114 (12) ◽  
pp. 2530-2541 ◽  
Author(s):  
Robert E. Donahue ◽  
Ping Jin ◽  
Aylin C. Bonifacino ◽  
Mark E. Metzger ◽  
Jiaqiang Ren ◽  
...  

Abstract Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize peripheral blood stem cells by different mechanisms. A rhesus macaque model was used to compare plerixafor and G-CSF–mobilized CD34+ cells. Three peripheral blood stem cell concentrates were collected from 3 macaques treated with G-CSF, plerixafor, or plerixafor plus G-CSF. CD34+ cells were isolated by immunoselection and were analyzed by global gene and microRNA (miR) expression microarrays. Unsupervised hierarchical clustering of the gene expression data separated the CD34+ cells into 3 groups based on mobilization regimen. Plerixafor-mobilized cells were enriched for B cells, T cells, and mast cell genes, and G-CSF–mobilized cells were enriched for neutrophils and mononuclear phagocyte genes. Genes up-regulated in plerixafor plus G-CSF–mobilized CD34+ cells included many that were not up-regulated by either agent alone. Two hematopoietic progenitor cell miR, miR-10 and miR-126, and a dendritic cell miR, miR-155, were up-regulated in G-CSF–mobilized CD34+ cells. A pre-B-cell acute lymphocytic leukemia miR, miR-143-3p, and a T-cell miR, miR-143-5p, were up-regulated in plerixafor plus G-CSF–mobilized cells. The composition of CD34+ cells is dependent on the mobilization protocol. Plerixafor-mobilized CD34+ cells include more B-, T-, and mast cell precursors, whereas G-CSF–mobilized cells have more neutrophil and mononuclear phagocyte precursors.


Sign in / Sign up

Export Citation Format

Share Document