Predictive value of APE1, BRCA1, ERCC1 and TUBB3 expression in patients with advanced non-small cell lung cancer (NSCLC) receiving first-line platinum–paclitaxel chemotherapy

2014 ◽  
Vol 74 (4) ◽  
pp. 777-786 ◽  
Author(s):  
Zheng Li ◽  
Yi Qing ◽  
Wei Guan ◽  
Mengxia Li ◽  
Yu Peng ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3828
Author(s):  
Anello Marcello Poma ◽  
Rossella Bruno ◽  
Iacopo Pietrini ◽  
Greta Alì ◽  
Giulia Pasquini ◽  
...  

Pembrolizumab has been approved as first-line treatment for advanced Non-small cell lung cancer (NSCLC) patients with tumors expressing PD-L1 and in the absence of other targetable alterations. However, not all patients that meet these criteria have a durable benefit. In this monocentric study, we aimed at refining the selection of patients based on the expression of immune genes. Forty-six consecutive advanced NSCLC patients treated with pembrolizumab in first-line setting were enrolled. The expression levels of 770 genes involved in the regulation of the immune system was analysed by the nanoString system. PD-L1 expression was evaluated by immunohistochemistry. Patients with durable clinical benefit had a greater infiltration of cytotoxic cells, exhausted CD8, B-cells, CD45, T-cells, CD8 T-cells and NK cells. Immune cell scores such as CD8 T-cell and NK cell were good predictors of durable response with an AUC of 0.82. Among the immune cell markers, XCL1/2 showed the better performance in predicting durable benefit to pembrolizumab, with an AUC of 0.85. Additionally, CD8A, CD8B and EOMES showed a high specificity (>0.86) in identifying patients with a good response to treatment. In the same series, PD-L1 expression levels had an AUC of 0.61. The characterization of tumor microenvironment, even with the use of single markers, can improve patients’ selection for pembrolizumab treatment.


2021 ◽  
Vol 9 (5) ◽  
pp. e001904
Author(s):  
Javier Ramos-Paradas ◽  
Susana Hernández-Prieto ◽  
David Lora ◽  
Elena Sanchez ◽  
Aranzazu Rosado ◽  
...  

BackgroundTumor mutational burden (TMB) is a recently proposed predictive biomarker for immunotherapy in solid tumors, including non-small cell lung cancer (NSCLC). Available assays for TMB determination differ in horizontal coverage, gene content and algorithms, leading to discrepancies in results, impacting patient selection. A harmonization study of TMB assessment with available assays in a cohort of patients with NSCLC is urgently needed.MethodsWe evaluated the TMB assessment obtained with two marketed next generation sequencing panels: TruSight Oncology 500 (TSO500) and Oncomine Tumor Mutation Load (OTML) versus a reference assay (Foundation One, FO) in 96 NSCLC samples. Additionally, we studied the level of agreement among the three methods with respect to PD-L1 expression in tumors, checked the level of different immune infiltrates versus TMB, and performed an inter-laboratory reproducibility study. Finally, adjusted cut-off values were determined.ResultsBoth panels showed strong agreement with FO, with concordance correlation coefficients (CCC) of 0.933 (95% CI 0.908 to 0.959) for TSO500 and 0.881 (95% CI 0.840 to 0.922) for OTML. The corresponding CCCs were 0.951 (TSO500-FO) and 0.919 (OTML-FO) in tumors with <1% of cells expressing PD-L1 (PD-L1<1%; N=55), and 0.861 (TSO500-FO) and 0.722 (OTML-FO) in tumors with PD-L1≥1% (N=41). Inter-laboratory reproducibility analyses showed higher reproducibility with TSO500. No significant differences were found in terms of immune infiltration versus TMB. Adjusted cut-off values corresponding to 10 muts/Mb with FO needed to be lowered to 7.847 muts/Mb (TSO500) and 8.380 muts/Mb (OTML) to ensure a sensitivity >88%. With these cut-offs, the positive predictive value was 78.57% (95% CI 67.82 to 89.32) and the negative predictive value was 87.50% (95% CI 77.25 to 97.75) for TSO500, while for OTML they were 73.33% (95% CI 62.14 to 84.52) and 86.11% (95% CI 74.81 to 97.41), respectively.ConclusionsBoth panels exhibited robust analytical performances for TMB assessment, with stronger concordances in patients with negative PD-L1 expression. TSO500 showed a higher inter-laboratory reproducibility. The cut-offs for each assay were lowered to optimal overlap with FO.


2020 ◽  
Vol 12 ◽  
pp. 175883592098036
Author(s):  
Saira Farid ◽  
Stephen V. Liu

Small-cell lung cancer (SCLC) is a highly lethal subtype of lung cancer. Despite concerted efforts over the past several decades, there have been limited therapeutic advances. Traditional chemotherapy offers a high response rate and rapid symptomatic improvement, but its benefit is fleeting, and relapse is quick and unforgiving. Immunotherapy has delivered improved outcomes for patients with many cancers and there was compelling rationale for development in SCLC. While initial efforts with cytotoxic T-lymphocyte protein-4 inhibitors failed to improve upon chemotherapy alone, the addition of programmed death ligand-1 (PD-L1) inhibitors to first-line chemotherapy finally provided long-awaited gains in survival. Atezolizumab, when added to carboplatin and etoposide, improved both progression-free survival and overall survival. Durvalumab, when added to platinum plus etoposide, similarly improved OS. Biomarker development has stalled as PD-L1 expression and tumor mutational burden have not been useful predictive biomarkers. However, based on the significant survival improvements, both atezolizumab and durvalumab were approved by the US Food and Drug Administration to be given with first-line chemotherapy, and these regimens represent the new standards of care for SCLC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhiyu Peng ◽  
Huahang Lin ◽  
Ke Zhou ◽  
Senyi Deng ◽  
Jiandong Mei

Abstract Objective To investigate the predictive value of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Methods We conducted a systemic search of PubMed, EMBASE, and the Cochrane Library from 1 January 2000 to 30 August 2020, to identify related studies. We combined the hazard ratio (HR) and 95% confidence interval (CI) to assess the correlation of PD-L1 expression with progression-free survival (PFS) and overall survival (OS). We assessed the quality of the included studies by the Newcastle–Ottawa Scale (NOS). We performed subgroup analyses based on immunohistochemistry (IHC) scoring system, IHC antibodies, sample size, countries, and survival analysis mode. Sensitivity analysis and evaluation of publication bias were also performed. Results Twelve studies including 991 patients met the criteria. The mean NOS score was 7.42 ± 1.19. Patients with high PD-L1 expression was associated with poorer PFS (HR = 1.90; 95% CI = 1.16–3.10; P = 0.011), while there was no association between PD-L1 expression and OS (HR = 1.19; 95% CI = 0.99–1.43; P = 0.070). Subgroup analysis prompted IHC scoring systems, IHC antibodies, and sample size have important effects on heterogeneity. The pooled results were robust according to the sensitivity analysis. Conclusions The result of this meta-analysis suggested that PD-L1 expression might be a predictive biomarker for EGFR-mutant non-small cell lung cancer treated with EGFR-TKIs.


Sign in / Sign up

Export Citation Format

Share Document