Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels

2015 ◽  
Vol 72 (6) ◽  
pp. 1339-1363 ◽  
Author(s):  
Hossein Hosseinzadeh ◽  
Shiva Zoroufi ◽  
Gholam Reza Mahdavinia
Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 560 ◽  
Author(s):  
Catalin Croitoru ◽  
Mihai Alin Pop ◽  
Tibor Bedo ◽  
Mihaela Cosnita ◽  
Ionut Claudiu Roata ◽  
...  

This paper discusses the structure morphology and the thermal and swelling behavior of physically crosslinked hydrogels, obtained from applying four successive freezing–thawing cycles to poly (vinyl alcohol) blended with various amounts of κ-carrageenan. The addition of carrageenan in a weight ratio of 0.5 determines a twofold increase in the swelling degree and the early diffusion coefficients of the hydrogels when immersed in distilled water, due to a decrease in the crystallinity of the polymer matrix. The diffusion of water into the polymer matrix could be considered as a relaxation-controlled transport (anomalous diffusion). The presence of the sulfate groups determines an increased affinity of the hydrogels towards crystal violet cationic dye. A maximum physisorption capacity of up to 121.4 mg/g for this dye was attained at equilibrium.


2021 ◽  
pp. 088532822110461
Author(s):  
Tijana Lužajić Božinovski ◽  
Vera Todorović ◽  
Ivan Milošević ◽  
Bogomir Bolka Prokić ◽  
Vladimir Gajdov ◽  
...  

Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage–biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68+). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb© material. The increased macrophage number, registered around the Ag/PVA/Gr implant on 60th p.o.d. indicates that the addition of graphene can, in a specific way, modulate different biological responses of tissues in the process of wound healing, regeneration, and integration.


2019 ◽  
Vol 27 (10) ◽  
pp. 2239-2249 ◽  
Author(s):  
Ehsan Roufegari-Nejhad ◽  
Mohammad Sirousazar ◽  
Vahid Abbasi-Chiyaneh ◽  
Farshad Kheiri

RSC Advances ◽  
2018 ◽  
Vol 8 (24) ◽  
pp. 13284-13291 ◽  
Author(s):  
Qiaomei Luo ◽  
Yangyang Shan ◽  
Xia Zuo ◽  
Jiaqi Liu

Tough PVA/GO nanocomposite hydrogel with well-developed anisotropic microstructure and excellent mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document