Steady-shear rheology and activation thermodynamics of the interpolymer complex between nonionic polymeric surfactant and hydrophobically modified polyacrylic acid in propylene glycol–water mixture

2017 ◽  
Vol 75 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Misha Rumyantsev ◽  
Maria V. Savinova
Langmuir ◽  
2018 ◽  
Vol 34 (37) ◽  
pp. 10993-11002 ◽  
Author(s):  
Valeriy V. Ginzburg ◽  
Tirtha Chatterjee ◽  
Alan I. Nakatani ◽  
Antony K. Van Dyk

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


2020 ◽  
Vol 316 ◽  
pp. 113875 ◽  
Author(s):  
Samah Hamze ◽  
David Cabaleiro ◽  
Thierry Maré ◽  
Brigitte Vigolo ◽  
Patrice Estellé

1999 ◽  
Vol 38 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Rudy Folkersma ◽  
Alois J. G. van Diemen ◽  
Jozua Laven ◽  
Hans N. Stein

2018 ◽  
Vol 225 ◽  
pp. 04014
Author(s):  
Seyed Reza Shamshirgaran ◽  
Hussain H. Al-Kayiem ◽  
Morteza K. Assadi ◽  
K.V. Sharma

Ethylene glycol and propylene glycol are commonly used as thermal liquids in solar flat-plate collectors (FPCs). They are utilized as base liquid as well as for improving the stability of nanofluids in FPCs. The objective of the present paper is to introduce a renewable-derived bio glycol for use as base liquid in FPCs. The effect of base ratio (BR) of different glycol products on the performance of a conventional FPC and a nanofluidladen FPC is investigated in this paper to determine its suitability. MATLAB programming was employed for modeling the performance of the FPC operating with copper and cerium oxide nanomaterials. The results show that 20:80 bio glycol/water mixture is capable of enhancing the FPC’s energetic efficiency up to 72.1% which is higher than with either ethylene glycol and propylene glycol. The energy efficiency of a glycol-based nanofluid-filled FPC decreases with the base ratio of all three glycol products. Since bio glycol is a non-toxic and safe product, it can be utilized as a safe and environmentally-friend antifreeze and base liquid in nanofluid-filled FPCs.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 359
Author(s):  
Katsiaryna S. Burts ◽  
Tatiana V. Plisko ◽  
Mikael Sjölin ◽  
Goncalo Rodrigues ◽  
Alexandr V. Bildyukevich ◽  
...  

This study deals with the development of antifouling ultrafiltration membranes based on polysulfone (PSF) for wastewater treatment and the concentration and purification of hemicellulose and lignin in the pulp and paper industry. The efficient simple and reproducible technique of PSF membrane modification to increase antifouling performance by simultaneous addition of triblock copolymer polyethylene glycol-polypropylene glycol-polyethylene glycol (Synperonic F108, Mn =14 × 103 g mol−1) to the casting solution and addition of polyacrylic acid (PAA, Mn = 250 × 103 g mol−1) to the coagulation bath is proposed for the first time. The effect of the PAA concentration in the aqueous solution on the PSF/Synperonic F108 membrane structure, surface characteristics, performance, and antifouling stability was investigated. PAA concentrations were varied from 0.35 to 2.0 wt.%. Membrane composition, structure, and topology were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The addition of PAA into the coagulation bath was revealed to cause the formation of a thicker and denser selective layer with decreasing its pore size and porosity; according to the structural characterization, an interpolymer complex of the two additives was formed on the surface of the PSF membrane. Hydrophilicity of the membrane selective layer surface was shown to increase significantly. The selective layer surface charge was found to become more negative in comparison to the reference membrane. It was shown that PSF/Synperonic F108/PAA membranes are characterized by better antifouling performance in ultrafiltration of humic acid solution and thermomechanical pulp mill (ThMP) process water. Membrane modification with PAA results in higher ThMP process water flux, fouling recovery ratio, and hemicellulose and total lignin rejection compared to the reference PSF/Synperonic F108 membrane. This suggests the possibility of applying the developed membranes for hemicellulose concentration and purification.


2020 ◽  
Vol 53 (12) ◽  
pp. 1773-1781
Author(s):  
L. K. Orazzhanova ◽  
Zh. S. Kassymova ◽  
B. Kh. Mussabayeva ◽  
A. N. Klivenko

2018 ◽  
Vol 57 (4) ◽  
pp. 293-306 ◽  
Author(s):  
Francesco Del Giudice ◽  
Benjamin V. Cunning ◽  
Rodney S. Ruoff ◽  
Amy Q. Shen

Sign in / Sign up

Export Citation Format

Share Document