Second Law of Thermodynamic Analysis of 40:60% Propylene Glycol and Water Mixture Based Nanodiamond Nanofluid under Transition Flow

2021 ◽  
pp. 108480
Author(s):  
L. Syam Sundar ◽  
Bobby Mathew ◽  
Ahmed Sefelnasr ◽  
Mohsen Sherif ◽  
Antonio C.M. Sousa
2020 ◽  
Vol 316 ◽  
pp. 113875 ◽  
Author(s):  
Samah Hamze ◽  
David Cabaleiro ◽  
Thierry Maré ◽  
Brigitte Vigolo ◽  
Patrice Estellé

Author(s):  
M. Z. Haq ◽  
M. R. Mohiuddin

The paper presents a thermodynamic analysis of a single cylinder four-stroke spark-ignition (SI) engine fuelled by four fuels namely iso-octane, methane, methanol and hydrogen. In SI engines, due to phenomena like ignition delay and finite flame speed manifested by the fuels, the heat addition process is not instantaneous, and hence ‘Weibe function’ is used to address the realistic heat release scenario of the engine. Empirical correlations are used to predict the heat loss from the engine cylinder. Physical states and chemical properties of gaseous species present inside the cylinder are determined using first and second law of thermodynamics, chemical kinetics, JANAF thermodynamic data-base and NASA polynomials. The model is implemented in FORTRAN 95 using standard numerical routines and some simulation results are validated against data available in literature. The second law of thermodynamics is applied to estimate the change of exergy i.e. the work potential or quality of the in-cylinder mixture undergoing various phases to complete the cycle. Results indicate that, around 4 to 24% of exergy initially possessed by the in-cylinder mixture is reduced during combustion and about 26 to 42% is left unused and exhausted to the atmosphere.


2018 ◽  
Vol 225 ◽  
pp. 04014
Author(s):  
Seyed Reza Shamshirgaran ◽  
Hussain H. Al-Kayiem ◽  
Morteza K. Assadi ◽  
K.V. Sharma

Ethylene glycol and propylene glycol are commonly used as thermal liquids in solar flat-plate collectors (FPCs). They are utilized as base liquid as well as for improving the stability of nanofluids in FPCs. The objective of the present paper is to introduce a renewable-derived bio glycol for use as base liquid in FPCs. The effect of base ratio (BR) of different glycol products on the performance of a conventional FPC and a nanofluidladen FPC is investigated in this paper to determine its suitability. MATLAB programming was employed for modeling the performance of the FPC operating with copper and cerium oxide nanomaterials. The results show that 20:80 bio glycol/water mixture is capable of enhancing the FPC’s energetic efficiency up to 72.1% which is higher than with either ethylene glycol and propylene glycol. The energy efficiency of a glycol-based nanofluid-filled FPC decreases with the base ratio of all three glycol products. Since bio glycol is a non-toxic and safe product, it can be utilized as a safe and environmentally-friend antifreeze and base liquid in nanofluid-filled FPCs.


Author(s):  
Raveendra Nath R ◽  
C. Vijaya Bhaskar Reddy ◽  
K.Hemachandra Reddy

In this paper, a thermodynamic investigation is done on a Kalina-flash cycle. This work is initially validated with the Kalina cycle power plant, Wich is commissioned in Husavic. Low-temperature Kalina-flash is considered for this study. This cycle is working with the ammonia-water mixture. The Kalina-flash cycle was optimized in the view of exergy and thermal efficiency. A multi-objective genetic algorithm is used to accomplish optimization. The optimum values of the objective functions are observed to be 40.20 and 11.70% respectively. At last, The influence of the separator inlet dryness fraction, basic ammonia mass fraction, temperature and flash pressure ratio on the first and second law efficiencies are analysed.


Author(s):  
John S. Morse

Abstract A graphical method is proposed for removing the “drudge work” of looking up property values and solving the conservation equations and second law in an Applied Thermodynamics course. The vehicle used is VisSim simulation software. The method requires the student to perform the thermodynamic analysis and set up the equations, but the computer finds the property values and solves the equations. This concept allows the student to explore various aspects of the topics covered in such a course, including power and refrigeration cycles, mixtures and psychrometrics, and combustion and equilibrium. Substantial design type problems can be solved easily, as can complicated analyses that are too difficult and time consuming for traditional solution methods.


2020 ◽  
Vol 45 (21) ◽  
pp. 12185-12202
Author(s):  
Luigi Acampora ◽  
Francesco Saverio Marra

Author(s):  
Rosa-Hilda Chavez ◽  
Jazmin Cortez-Gonzalez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

The present paper describes the thermodynamic analysis of the carbon dioxide (CO2) gas removal process in two separated columns with absorption/stripping sections respectively. This process is characterized as mass transfer enhanced by chemical reaction, in which the presence of an alkanolamine enhances the solubility of an acid gas in the aqueous phase at a constant value of the equilibrium partial pressure. A very useful procedure for analyzing a process is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, they point out where the irreversibilities of the process are located, and provide a generalized discussion from the successful application of the technique.


Sign in / Sign up

Export Citation Format

Share Document