scholarly journals Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize

Author(s):  
Guo-qing Song ◽  
Xue Han ◽  
John T. Ryner ◽  
Addie Thompson ◽  
Kan Wang

Abstract Key message Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. Abstract MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12–18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Han ◽  
Dechun Wang ◽  
Guo-qing Song

AbstractYield enhancement is a top priority for soybean (Glycine max Merr.) breeding. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a major integrator in flowering pathway, and it is anticipated to be capable of regulating soybean reproductive stages through its interactions with other MADS-box genes. Thus, we produced transgenic soybean for a constitutive expression of a maize SOC1 (ZmSOC1). T1 transgenic plants, in comparison with the nontransgenic plants, showed early flowering, reduced height of mature plants, and no significant impact on grain quality. The transgenic plants also had a 13.5–23.2% of higher grain weight per plant than the nontransgenic plants in two experiments. Transcriptome analysis in the leaves of 34-day old plants revealed 58 differentially expressed genes (DEGs) responding to the expression of the ZmSOC1, of which the upregulated FRUITFULL MADS-box gene, as well as the transcription factor VASCULAR PLANT ONE-ZINC FINGER1, contributed to the promoted flowering. The downregulated gibberellin receptor GID1B could play a major role in reducing the plant height. The remaining DEGs suggested broader effects on the other unmeasured traits (e.g., photosynthesis efficiency and abiotic tolerance), which could contribute to yield increase. Overall, modulating expression of SOC1 in soybean provides a novel and promising approach to regulate plant growth and reproductive development and thus has a potential either to enhance grain yield or to change plant adaptability.


2010 ◽  
Author(s):  
Haya Friedman ◽  
Julia Vrebalov ◽  
James Giovannoni ◽  
Edna Pesis

Fruit deterioration is a consequence of a genetically-determined fruit ripening and senescence programs, in which developmental factors lead to a climacteric rise of ethylene production in ethylene-sensitive fruits such as tomato and banana. Breeding of tomato with extended fruit shelf life involves the incorporation of a mutation in RIN, a MADS-box transcription factor participating in developmental control signalling of ripening. The RIN mode of action is not fully understood, and it may be predicted to interact with other MADS-box genes to execute its effects. The overall goal of this study was to demonstrate conservation of ripening control functions between banana and tomato and thus, the potential to genetically extend shelf-life in banana based on tools developed in tomato. The specific objectives were: 1. To increase the collection of potential RIN-like genes from banana; 2. To verify their action as developmental regulators; 3. To elucidate MADS-box gene mode of action in ripening control; 4. To create transgenic banana plants that express low levels of endogenous Le-RIN- like, MaMADS- gene(s). We have conducted experiments in banana as well as in tomato. In tomato we have carried out the transformation of the tomato rin mutant with the MaMADS1 and MaMADS2 banana genes. We have also developed a number of domain swap constructs to functionally examine the ripening-specific aspects of the RIN gene. Our results show the RIN-C terminal region is essential for the gene to function in the ripening signalling pathway. We have further explored the tomato genome databases and recovered an additional MADS-box gene necessary for fruit ripening. This gene has been previously termed TAGL1 but has not been functionally characterized in transgenic plants. TAGL1 is induced during ripening and we have shown via RNAi repression that it is necessary for both fleshy fruit expansion and subsequent ripening. In banana we have cloned the full length of six MaMADS box genes from banana and determined their spatial and temporal expression patterns. We have created antibodies to MaMADS2 and initiated ChI assay. We have created four types of transgenic banana plants designed to reduce the levels of two of the MaMADS box genes. Our results show that the MaMADS-box genes expression in banana is dynamically changing after harvest and most of them are induced at the onset of the climacteric peak. Most likely, different MaMADS box genes are active in the pulp and peel and they are differently affected by ethylene. Only the MaMADS2 box gene expression is not affected by ethylene indicating that this gene might act upstream to the ethylene response pathway. The complementation analysis in tomato revealed that neither MaMADS1 nor MaMADS2 complement the rin mutation suggesting that they have functionally diverged sufficiently to not be able to interact in the context of the tomato ripening regulatory machinery. The developmental signalling pathways controlling ripening in banana and tomato are not identical and/or have diverged through evolution. Nevertheless, at least the genes MaMADS1 and MaMADS2 constitute part of the developmental control of ripening in banana, since transgenic banana plants with reduced levels of these genes are delayed in ripening. The detailed effect on peel and pulp, of these transgenic plants is underway. So far, these transgenic bananas can respond to exogenous ethylene, and they seem to ripen normally. The response to ethylene suggest that in banana the developmental pathway of ripening is different than that in tomato, because rin tomatoes do not ripen in response to exogenous ethylene, although they harbor the ethylene response capability This study has a major contribution both in scientific and agricultural aspects. Scientifically, it establishes the role of MaMADS box genes in a different crop-the banana. The developmental ripening pathway in banana is similar, but yet different from that of the model plant tomato and one of the major differences is related to ethylene effect on this pathway in banana. In addition, we have shown that different components of the MaMADS-box genes are employed in peel and pulp. The transgenic banana plants created can help to further study the ripening control in banana. An important and practical outcome of this project is that we have created several banana transgenic plants with fruit of extended shelf life. These bananas clearly demonstrate the potential of MaMADS gene control for extending shelf-life, enhancing fruit quality, increasing yield in export systems and for improving food security in areas where Musaspecies are staple food crops.  


2020 ◽  
Author(s):  
Qasim Raza ◽  
Awais Riaz ◽  
Rana Muhammad Atif ◽  
Babar Hussain ◽  
Zulfiqar Ali ◽  
...  

AbstractMADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. However, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the latest publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies, without a single FLOWERING LOCUS C homolog present in the wheat genome. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more recent evolutionary origin was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that will accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.


2012 ◽  
Vol 53 (6) ◽  
pp. 1003-1016 ◽  
Author(s):  
Yinbo Gan ◽  
Andreas Bernreiter ◽  
Sophie Filleur ◽  
Beverley Abram ◽  
Brian G. Forde

Sign in / Sign up

Export Citation Format

Share Document