A trophic mass balance model of the eastern Chukchi Sea with comparisons to other high-latitude systems

Polar Biology ◽  
2014 ◽  
Vol 37 (7) ◽  
pp. 911-939 ◽  
Author(s):  
G. Andy Whitehouse ◽  
Kerim Aydin ◽  
Timothy E. Essington ◽  
George L. Hunt
2008 ◽  
Vol 65 (12) ◽  
pp. 2791-2806 ◽  
Author(s):  
Marianne Nilsen ◽  
Torstein Pedersen ◽  
Einar Magnus Nilssen ◽  
Stein Fredriksen

Stable isotopes of δ13C and δ15N were used to examine food sources and trophic structure of 65 taxa, representing 19 ecological groups, in a high-latitude ecosystem. Discrimination was made between pelagic and benthic carbon sources, where feeding in most cases reflected the habitat. Trophic levels from these analyses, TLN, were compared with corresponding levels estimated by an Ecopath mass-balance model, TLE, constructed independently of the isotope data. The good correlation between the two methods (r2 = 0.72) supports the diet composition and the grouping of taxa into ecological groups in the model. However, when estimates diverged, this was often explained by the analyses of few taxa, taxa that were not the most representative for the group, or the analyses of specimens from a limited size range. Some assumed detrivores were assigned high TLN in favour of an abundant microbial community in the sediments. High TLN estimates for many invertebrate taxa, combined with relatively low TLN for fishes, suggest that parts of the benthic food web are decoupled from the classical food web.


Author(s):  
Linden B. Huhmann ◽  
Charles F. Harvey ◽  
Ana Navas-Acien ◽  
Joseph Graziano ◽  
Vesna Slavkovich ◽  
...  

1990 ◽  
Vol 26 (5) ◽  
pp. 1079-1092 ◽  
Author(s):  
Richard Barry ◽  
Marcel Prévost ◽  
Jean Stein ◽  
Andre P. Plamondon

1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2017 ◽  
Vol 53 (4) ◽  
pp. 3146-3178 ◽  
Author(s):  
Baohong Ding ◽  
Kun Yang ◽  
Wei Yang ◽  
Xiaobo He ◽  
Yingying Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document