Left ventricular myocardial deformation in Takotsubo syndrome: a cardiovascular magnetic resonance myocardial feature tracking study

2018 ◽  
Vol 28 (12) ◽  
pp. 5160-5170 ◽  
Author(s):  
Thomas Stiermaier ◽  
Torben Lange ◽  
Amedeo Chiribiri ◽  
Christian Möller ◽  
Tobias Graf ◽  
...  
2017 ◽  
Vol 20 (1) ◽  
pp. 026 ◽  
Author(s):  
Nan Cheng ◽  
Liuquan Cheng ◽  
Rong Wang ◽  
Lin Zhang ◽  
Changqing Gao

Objective: The aim of this study was to quantify left ventricular torsion by newly applied cardiovascular magnetic resonance feature tracking (CMR-FT), and to evaluate the clinical value of the ventricular torsion as a sensitive indicator of cardiac function by comparison of preoperative and postoperative torsion.Methods: A total of 54 volunteers and 36 patients with previous myocardial infarction (MI) and LV ejection fraction (EF) between 30%-50% were screened preoperatively or postoperatively by MRI. The patients’ short axis views of the whole heart were acquired, and all patients had a scar area >75% in at least one of the anterior or inferior segments. Their apical and basal rotation values were analyzed by feature tracking, and the correlation analysis was performed for the improvement of LV torsion and ejection fraction after CABG. The intra- and inter-observer reliabilities of torsion measured by CMR-FT were assessed.Results: In normal hearts, the apex rotated counterclockwise in the systolic period with the peak rotation as 10.2 ± 4.8°, and the base rotated clockwise as the peak value was 7.0 ± 3.3°. There was a timing hiatus between the apex and base untwisting, during which period the heart recoils and its suction sets the stage for the following rapid filling period. The postoperative torsion and rotation significantly improved compared with preoperative ones. However, the traditional indicator of cardiac function, ejection fraction, didn’t show significant improvement.Conclusion: Left ventricular torsion derived from CMR-FT, which does not require specialized CMR sequences, was sensitive to patients with low ejection fraction whose cardiac function significantly improved after CABG. The rapid acquisition of this measurement has potential for the assessment of cardiac function in clinical practice. 


Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chengjie Gao ◽  
Yajie Gao ◽  
Jingyu Hang ◽  
Meng Wei ◽  
Jingbo Li ◽  
...  

Abstract Background A considerable number of non-ischemic dilated cardiomyopathy (NDCM) patients had been found to have normalized left ventricular (LV) size and systolic function with tailored medical treatments. Accordingly, we aimed to evaluate if strain parameters assessed by cardiovascular magnetic resonance (CMR) feature tracking (FT) analysis could predict the NDCM recovery. Methods 79 newly diagnosed NDCM patients who underwent baseline and follow-up CMR scans were enrolled. Recovery was defined as a current normalized LV size and systolic function evaluated by CMR. Results Among 79 patients, 21 (27%) were confirmed recovered at a median follow-up of 36 months. Recovered patients presented with faster heart rates (HR) and larger body surface area (BSA) at baseline (P < 0.05). Compared to unrecovered patients, recovered pateints had a higher LV apical radial strain divided by basal radial strain (RSapi/bas) and a lower standard deviation of time to peak radial strain in 16 segments of the LV (SD16-TTPRS). According to a multivariate logistic regression model, RSapi/bas (P = 0.035) and SD16-TTPRS (P = 0.012) resulted as significant predictors for differentiation of recovered from unrecovered patients. The sensitivity and specificity of RSapi/bas and SD16-TTPRS for predicting recovered conditions were 76%, 67%, and 91%, 59%, with the area under the curve of 0.75 and 0.76, respectively. Further, Kaplan Meier survival analysis showed that patients with RSapi/bas ≥ 0.95% and SD16-FTPRS ≤ 111 ms had the highest recovery rate (65%, P = 0.027). Conclusions RSapi/bas and CMR SD16-TTPRS may be used as non-invasive parameters for predicting LV recovery in NDCM. This finding may be beneficial for subsequent treatments and prognosis of NDCM patients. Registration number: ChiCTR-POC-17012586.


2017 ◽  
Vol 90 (1080) ◽  
pp. 20170072 ◽  
Author(s):  
Haifa M Almutairi ◽  
Redha Boubertakh ◽  
Marc E Miquel ◽  
Steffen E Petersen

2019 ◽  
Vol 20 (9) ◽  
pp. 1059-1069 ◽  
Author(s):  
Sören J Backhaus ◽  
Thomas Stiermaier ◽  
Torben Lange ◽  
Amedeo Chiribiri ◽  
Johannes Uhlig ◽  
...  

AbstractAimsThe exact pathophysiology of Takotsubo syndrome (TTS) remains not fully understood with most studies focussing on ventricular pathology. Since atrial involvement may have a significant role, we assessed the diagnostic and prognostic potential of atrial cardiovascular magnetic resonance feature tracking (CMR-FT) in TTS.Methods and resultsThis multicentre study recruited 152 TTS patients who underwent CMR on average within 3 days after hospitalization. Reservoir [total strain εs and peak positive strain rate (SR) SRs], conduit (passive strain εe and peak early negative SRe), and booster pump function (active strain εa and peak late negative SRa) were assessed in a core laboratory. Results were compared with 21 control patients with normal biventricular function. A total of 20 patients underwent follow-up CMR (median 3.5 months, interquartile range 3–5). All patients were approached for general follow-up. Left atrial (LA) but not right atrial (RA) reservoir and conduit function were impaired during the acute phase (εs: P = 0.043, εe: P < 0.001, SRe: P = 0.047 vs. controls) and recovered until follow-up (εs: P < 0.001, SRs: P = 0.04, εe: P = 0.001, SRe: P = 0.04). LA and RA booster pump function were increased in the acute setting (LA-εa: P = 0.045, SRa: P = 0.002 and RA-εa: P = 0.004, SRa: P = 0.002 vs. controls). LA-εs predicted mortality [hazard ratio 1.10, 95% confidence interval (CI) 1.01–1.20; P = 0.037] irrespectively of established cardiovascular risk factors (P = 0.019, multivariate analysis) including left ventricular ejection fraction (LVEF) (area under the curve 0.71, 95% CI 0.55–0.86, P = 0.048).ConclusionTTS pathophysiology comprises transient impairments in LA reservoir and conduit functions and enhanced bi-atrial active booster pump functions. Atrial CMR-FT may evolve as a superior marker of adverse events over and above established parameters such as LVEF and atrial volume.


Sign in / Sign up

Export Citation Format

Share Document