Ion pump as molecular ratchet and effects of noise: electric activation of cation pumping by Na,K-ATPase

2002 ◽  
Vol 75 (2) ◽  
pp. 345-352 ◽  
Author(s):  
T.Y. Tsong ◽  
T.D. Xie
Keyword(s):  
Ion Pump ◽  
Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


Author(s):  
J.C.H. Spence ◽  
J. Mayer

The Zeiss 912 is a new fully digital, side-entry, 120 Kv TEM/STEM instrument for materials science, fitted with an omega magnetic imaging energy filter. Pumping is by turbopump and ion pump. The magnetic imaging filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient parallel (area) detection. The energy loss intensity distribution may also be displayed on the screen, and recorded by scanning it over the PMT supplied. If a CCD camera is fitted and suitable new software developed, “parallel ELS” recording results. For large fields of view, filtered images can be recorded much more efficiently than by Scanning Reflection Electron Microscopy, and the large background of inelastic scattering removed. We have therefore evaluated the 912 for REM and RHEED applications. Causes of streaking and resonance in RHEED patterns are being studied, and a more quantitative analysis of CBRED patterns may be possible. Dark field band-gap REM imaging of surface states may also be possible.


Nano Research ◽  
2021 ◽  
Author(s):  
Yaping Feng ◽  
Haoyu Dai ◽  
Yi Zhang ◽  
Jianjun Chen ◽  
Fengxiang Chen ◽  
...  

2021 ◽  
Vol 511 ◽  
pp. 230427
Author(s):  
Jili Li ◽  
Junwei Zhao ◽  
Chunjuan Tang ◽  
Tiekun Jia ◽  
Jianhua Hou ◽  
...  

1986 ◽  
Vol 122 (1) ◽  
pp. 25-35
Author(s):  
ČEDOMIL LUCU ◽  
DIETRICH SIEBERS

Sodium and chloride fluxes, as well as transbranchial potentials (TBP) were studied in isolated perfused gill filaments of the crab Carcinus mediterraneus. Experiments were carried out in media that were either hyposmotic to the perfusion solution (asymmetrical conditions) or isosmotic (symmetrical conditions). Fluxes were found to be diffusional in gills under asymmetrical conditions; amiloride induced an inhibitory effect on influxes, without affecting TBP. Under symmetrical conditions, TBP was −7.6±2.3mV, suggesting that the electrogenic ion pump contributes significantly to the development of TBP. Immediately after addition of 2.5 × 10−4 moll−1 amiloride to the external solution, sodium influxes were reduced to 31% of those in the control group, and TBP was significantly hyperpolarized from −7.6 to −14.8 mV. The absence of Ca2+ under symmetrical conditions diminished TBP hyperpolarization. Half-maximal inhibition of sodium influxes by amiloride was at 7 × 10−5 moll−1. This low amiloride affinity is typical of low resistance leaky epithelia. Sodium transport is discussed as an amiloride-affected influx, probably as a Na/H antiport.


1999 ◽  
Vol 202 (18) ◽  
pp. 2485-2493
Author(s):  
R.E. Bishop ◽  
J.J. Torres

Leptocephali are the unusual transparent larvae that are typical of eels, bonefish, tarpon and ladyfish. Unlike the larvae of all other fishes, leptocephali may remain in the plankton as larvae for several months before metamorphosing into the juvenile form. During their planktonic phase, leptocephali accumulate energy reserves in the form of glycosaminoglycans, which are then expended to fuel metamorphosis. The leptocephalus developmental strategy is thus fundamentally different from that exhibited in all other fishes in two respects: it is far longer in duration and energy reserves are accumulated. It was anticipated that the unusual character of leptocephalus development would be reflected in the energy budget of the larva. This study describes the allocation of energy to metabolism and excretion, two important elements of the energy budget. Metabolic rates were measured directly in four species of leptocephali, Paraconger caudilimbatus, Ariosoma balearicum, Gymnothorax saxicola and Ophichthus gomesii, using sealed-jar respirometry at sea. Direct measurements of metabolic rates were corroborated by measuring activities of lactate dehydrogenase and citrate synthase, two key enzymes of intermediary metabolism, in addition to that of Na(+)/K(+)-ATPase, a ubiquitous ion pump important in osmotic regulation. Excretion rates were determined by subsampling the sea water used in the respiratory incubations. The entire premetamorphic size range for each species was used in all assays. Mass-specific oxygen consumption rate, excretion rate and all enzyme activities (y) declined precipitously with increasing mass (M) according to the equation y=aM(b), where a is a species-specific constant and −1.74<b<-0.44. In leptocephali, the highly negative slope of the familiar allometric equation describing the relationship between mass-specific metabolic rate and mass, normally between −0.33 and 0, showed that a massive decline in metabolic rate occurs with increasing size. The result suggests that the proportion of actively metabolizing tissue also declines with size, being replaced in large measure by the metabolically inert energy depot, the glycosaminoglycans. Leptocephali can thus grow to a large size with minimal metabolic penalty, which is an unusual and successful developmental strategy.


Sign in / Sign up

Export Citation Format

Share Document