Inhibition of ion pump ATPase activity by 3′-O-(4-Benzoyl)benzoyl-ATP (BzATP): assessment of BzATP as an active site-directed probe

1986 ◽  
Vol 860 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Chinh M. Tran ◽  
Robert A. Farley
Keyword(s):  
1975 ◽  
Vol 228 (4) ◽  
pp. 1178-1182 ◽  
Author(s):  
AK Bhan ◽  
J Scheuer

Cardiac myosin from rats exercised 90 or 150 min daily for 8 wk was compared with the myosin from the hearts of matched sedentary controls. The Ca++-ATPase activity was increased 17 percent in rats exercised 90 min and 30 percent in rats exercised 150 min daily. In the exercised group 0.18 M KCl increased the myosin ATPase activity by 50 percent but had no effect in the control group. Ethylene glycol activated the Ca++-ATPase in control myosin preparations, but had no significant effect on myosin from conditioned hearts. Heavy meromyosin (HMM) from conditioned hearts had a higher Ca++-ATPase activity than from controls. Fluorescence with 8-anilinonaphthalene sulfonate (ANS) was increased 30 percent in HMM from conditioned hearts. The results suggest that the increased myosin ATPase activity in the hearts of exercised animals may be due to a local conformational change at or near the active site.


1992 ◽  
Vol 287 (3) ◽  
pp. 1011-1017 ◽  
Author(s):  
P V Attwood ◽  
B D L A Graneri

Preparations of pyruvate carboxylase catalyse the cleavage of MgATP in the absence of pyruvate and acetyl-CoA. The rate of this cleavage is higher in the presence of HCO3- than in its absence. Incubation of the enzyme preparations with an excess of the pyruvate carboxylase inhibitor, avidin, completely abolishes the pyruvate carboxylating activity of the enzyme preparations but only abolishes the HCO3(-)-dependent MgATP cleaving activity, with no effect on the HCO3(-)-independent ATPase activity. The HCO3(-)-dependent MgATP cleavage is also sensitive to inhibition by a pyruvate carboxylase inhibitor, oxamate, and the dependence of the reaction on the free Mg2+ concentration is similar to that of the pyruvate-carboxylation reaction, whereas the HCO3(-)-independent MgATP cleavage is not dependent on the concentration of free Mg2+ in the range tested. This indicates that MgATP cleavage by pyruvate carboxylase is entirely dependent on the presence of HCO3- and that there may be a low level of ATPase contamination in the enzyme preparations. In addition, inhibition of the HCO3(-)-dependent MgATP cleavage by both avidin and oxamate indicate that although biotin does not directly participate in the reaction, its presence is required in that part of the active site of the enzyme. The rate of HCO3(-)-dependent MgATP cleavage is about 0.07% of that of the full pyruvate carboxylation reaction under similar conditions with saturating substrates. The reaction mechanism is sequential with respect to MgATP and HCO3- addition and Mg2+ adds at equilibrium before MgATP. Acetyl-CoA stimulates the HCO3(-)-dependent MgATP cleavage at low MgATP concentrations, with the stimulation being greater at low Mg2+ concentrations. At high levels of MgATP in the presence of acetyl-CoA, substrate inhibition is evident and is more pronounced at increasing concentrations of Mg2+. This inhibition appears to be, at least in part, caused by inhibition of decarboxylation of the enzyme-carboxybiotin complex by the binding to this complex of Mg2+ and MgATP, which probably act to reduce the rate of movement of carboxybiotin from the site of the MgATP cleavage reaction to that of the pyruvate carboxylation reaction where it is unstable and decarboxylates.


1983 ◽  
Vol 214 (1) ◽  
pp. 59-68 ◽  
Author(s):  
J M Hamlyn ◽  
A E Senior

Preparations of enzymically dispersed rat pancreatic cells hydrolyse externally added nucleoside triphosphates and diphosphates at high rates in the presence of Mg2+ or Ca2+. The lack of response to specific inhibitors and activators differentiates this hydrolytic activity from that of other well-characterized ion-transporting ATPases. Studies based on inactivation of this hydrolytic activity by the covalently reacting, slowly permeating probe diazotized sulphanilic acid indicated that this nucleoside tri- and di-phosphatase is primarily a plasma-membrane ecto-enzyme. It is the major ATPase activity associated with intact cells, homogenates and isolated plasma-membrane fractions. Concanavalin A stimulates this ATPase activity of intact cells and isolated plasma-membrane fractions. The insensitivity of this ATPase activity to univalent ions and inhibitors of pancreatic electrolyte secretion, taken together with the evidence that the active site is externally located, suggests that this enzyme is not directly involved in HCO3- secretion in the pancreas. Its actual function remains unknown.


Biochemistry ◽  
1992 ◽  
Vol 31 (25) ◽  
pp. 5905-5911 ◽  
Author(s):  
Nancy E. Ward ◽  
Catherine A. O'Brian

2011 ◽  
Vol 286 (12) ◽  
pp. 10378-10386 ◽  
Author(s):  
Marcella Patrick ◽  
Konstantin V. Korotkov ◽  
Wim G. J. Hol ◽  
Maria Sandkvist

EpsE is an ATPase that powers transport of cholera toxin and hydrolytic enzymes through the Type II secretion (T2S) apparatus in the Gram-negative bacterium, Vibrio cholerae. On the basis of structures of homologous Type II/IV secretion ATPases and our biochemical data, we believe that EpsE is active as an oligomer, likely a hexamer, and the binding, hydrolysis, and release of nucleotide cause EpsE to undergo dynamic structural changes, thus converting chemical energy to mechanical work, ultimately resulting in extracellular secretion. The conformational changes that occur as a consequence of nucleotide binding would realign conserved arginines (Arg210, Arg225, Arg320, Arg324, Arg336, and Arg369) from adjoining domains and subunits to complete the active site around the bound nucleotide. Our data suggest that these arginines are essential for ATP hydrolysis, although their roles in shaping the active site of EpsE are varied. Specifically, we have shown that replacements of these arginine residues abrogate the T2S process due to a reduction of ATPase activity yet do not have any measurable effect on nucleotide binding or oligomerization of EpsE. We have further demonstrated that point mutations in the EpsE intersubunit interface also reduce ATPase activity without disrupting oligomerization, strengthening the idea that residues from multiple subunits must precisely interact in order for EpsE to be sufficiently active to support T2S. Our findings suggest that the action of EpsE is similar to that of other Type II/IV secretion ATPase family members, and thus these results may be widely applicable to the family as a whole.


1993 ◽  
Vol 293 (1) ◽  
pp. 269-274 ◽  
Author(s):  
A A Benders ◽  
J A Timmermans ◽  
A Oosterhof ◽  
H J Ter Laak ◽  
T H M S M van Kuppevelt ◽  
...  

Since defective regulation of ion transport could initiate or contribute to the abnormal cellular function in myotonic dystrophy (MyD), Na+/K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase were examined in skeletal muscle and cultured skeletal muscle cells of controls and MyD patients. Na+/K(+)-ATPase was investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphate (3-O-MFPase). SR Ca(2+)-ATPase was analysed by e.l.i.s.a., Ca(2+)-dependent phosphorylation and its activities with ATP and 3-O-methylfluorescein phosphatase (3-O-MFP). In MyD muscle the K(+)-dependent 3-O-MFPase activity and the activity and concentration of SR Ca(2+)-ATPase were decreased by 40%. In cultured muscle cells from MyD patients the activities as well as the concentration of both Na+/K(+)-ATPase and SR Ca(2+)-ATPase were reduced by about 30-40%. The ouabain-binding constant and the molecular activities, i.e. catalytic-centre activities with ATP or 3-O-MFP, of Na+/K(+)-ATPase and SR Ca(2+)-ATPase were similar in muscle as well as in cultured cells from both controls and MyD patients. Thus the decreased activity of both ATPases in MyD muscle is caused by a reduction in the number of their molecules. To check whether the deficiency of ATP-dependent ion pumps is a general feature of the pathology of MyD, we examined erythrocytes from the same patients. In these cells the Ca2+ uptake rate and the Ca(2+)-ATPase activity were lower than in controls, but the Ca(2+)-ATPase concentration was normal. Thus the reduced Ca(2+)-ATPase activity is caused by a decrease in the molecular activity of the ion pump. The Na+/K(+)-ATPase activity is also lower in erythrocytes of MyD patients. It is concluded that the observed alterations in ion pumps may contribute to the pathological phenomena in the muscle and other tissues in patients with MyD.


1980 ◽  
Vol 192 (2) ◽  
pp. 483-488 ◽  
Author(s):  
I A Kozlov ◽  
Y M Milgrom ◽  
I S Tsybovski

The alpha-subunits of factor-F1 ATPase are removed by extraction of submitochondrial particles with 1.75 M-LiCl, with the consequent loss of ATPase activity. ATPase activity is reconstituted by incubation of LiCl-extracted particles with purified alpha-subunits, and the reconstituted ATPase activity is oligomycin-sensitive. Reconstitution is enhanced by maintenance of the alpha-subunits in reduced form by dithiothreitol or NaBH4 and by modification of the alpha-subunits by p-chloromercuribenzoate, iodoacetic acid or N-ethylmaleimide. Experiments with the mixed anhydride of ATP and mesitylene-carboxylic acid, which was previously shown to interact with the F1 active site, localized on the beta-subunits, indicate that the active site of ATPase is shielded by the alpha-subunits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fu-Lung Yeh ◽  
Shang-Lin Chang ◽  
Golam Rizvee Ahmed ◽  
Hsin-I Liu ◽  
Luh Tung ◽  
...  

AbstractSplicing, a key step in the eukaryotic gene-expression pathway, converts precursor messenger RNA (pre-mRNA) into mRNA by excising introns and ligating exons. This task is accomplished by the spliceosome, a macromolecular machine that must undergo sequential conformational changes to establish its active site. Each of these major changes requires a dedicated DExD/H-box ATPase, but how these enzymes are activated remain obscure. Here we show that Prp28, a yeast DEAD-box ATPase, transiently interacts with the conserved 5′ splice-site (5′SS) GU dinucleotide and makes splicing-dependent contacts with the U1 snRNP protein U1C, and U4/U6.U5 tri-snRNP proteins, Prp8, Brr2, and Snu114. We further show that Prp28’s ATPase activity is potentiated by the phosphorylated Npl3, but not the unphosphorylated Npl3, thus suggesting a strategy for regulating DExD/H-box ATPases. We propose that Npl3 is a functional counterpart of the metazoan-specific Prp28 N-terminal region, which can be phosphorylated and serves as an anchor to human spliceosome.


2016 ◽  
Vol 198 (10) ◽  
pp. 1521-1533 ◽  
Author(s):  
Mihaela-Carmen Unciuleac ◽  
Paul C. Smith ◽  
Stewart Shuman

ABSTRACTAAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of aMycobacterium smegmatisAAA protein Msm0858, the ortholog ofMycobacterium tuberculosisRv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer.IMPORTANCERecent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a structural homolog of mammalian p97, with respect to the linear order and tertiary structures of their domains.


FEBS Letters ◽  
1999 ◽  
Vol 445 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Naeem Rashid ◽  
Masaaki Morikawa ◽  
Shigenori Kanaya ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

Sign in / Sign up

Export Citation Format

Share Document