scholarly journals 3D mapping of polycyclic aromatic hydrocarbons, hydroxyl radicals, and soot volume fraction in sooting flames using FRAME technique

2021 ◽  
Vol 127 (11) ◽  
Author(s):  
Devashish Chorey ◽  
Matthias Koegl ◽  
Prasad Boggavarapu ◽  
Florian J. Bauer ◽  
Lars Zigan ◽  
...  

AbstractWe report the three-dimensional (3D) mapping of polycyclic aromatic hydrocarbons (PAHs), soot, and hydroxyl radicals (OH) in ethylene/air diffusion flames. A structured illumination-based frequency recognition algorithm for multiple exposures (FRAME) approach is combined with sample translation to intersect the flame in several two-dimensional planes. The FRAME technique has been used for recording a snapshot of multiple species on a single camera. It relies on extracting the amplitude of spatial modulation of two or more probed species encoded on a single sub-image. Here, the FRAME technique is first applied for simultaneous imaging of PAH by laser-induced fluorescence (PAH-LIF) and soot by laser-induced incandescence (LII). Sequentially, it is employed for simultaneous mapping of OH-LIF and soot-LII. The LII signal is converted to absolute soot volume fraction (fv) maps using a line-of-sight light extinction measurement. Finally, we have demonstrated the approach for layer-wise 2D imaging of soot volume fraction and averaged 3D mapping of multiple species.

Author(s):  
Krishna C. Kalvakala ◽  
Suresh K. Aggarwal

We report herein a computational study to characterize the effect of oxygenation on polycyclic aromatic hydrocarbons (PAHs) and soot emissions in ethylene diffusion flames at pressures 1–8 atm. Laminar oxygenated flames are established in a counterflow configuration by using N2 diluted fuel stream along with O2-enriched oxidizer stream such that the stoichiometric mixture fraction (ζst) is varied, but the adiabatic flame temperature is not materially changed. Simulations are performed using a validated fuel chemistry model and a detailed soot model. The primary objective is to enhance the fundamental understanding of PAHs and soot formation in oxygenated flames at elevated pressures. At a given pressure, as the level of oxygenation (ζst) is increased, we observe a significant reduction in PAHs (benzene and pyrene) and consequently in soot formation. On the other hand, at a fixed ζst, as pressure is increased, it leads to increased PAHs formation and thus higher soot emission. Both soot number density and soot volume fraction increase with pressure. The reaction path analysis indicates that at higher pressures, the C2/C4 path becomes more significant for benzene formation compared to the propargyl recombination path. Results further indicate that the effectiveness of oxygenation in reducing the formation of pyrene and soot becomes less pronounced at higher pressures. In contrast, the effect of pressure on pyrene and soot formation becomes more pronounced at higher oxygenation levels. The behavior can be explained by examining the flame structure and hydrodynamics effects at different pressure and oxygenation levels.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


Sign in / Sign up

Export Citation Format

Share Document