Study on the propagation velocity of internal solitary waves in the Andaman Sea using Terra/Aqua-MODIS remote sensing images

Author(s):  
Lina Sun ◽  
Jie Zhang ◽  
Junmin Meng
2019 ◽  
Vol 48 (12) ◽  
pp. 1228003-1228003
Author(s):  
Jing NING Jing NING ◽  
Jing WANG Jing WANG ◽  
Meng ZHANG Meng ZHANG ◽  
Hai-ji CUI Hai-ji CUI ◽  
Ke-xiao LU Ke-xiao LU

2018 ◽  
Vol 10 (6) ◽  
pp. 861 ◽  
Author(s):  
Jorge Magalhaes ◽  
José da Silva

Author(s):  
Yunchao Yang ◽  
Xiaodong Huang ◽  
Wei Zhao ◽  
Chun Zhou ◽  
Siwei Huang ◽  
...  

AbstractThe complex behaviors of internal solitary waves (ISWs) in the Andaman Sea were revealed using data collected over nearly 22-month-long observation period completed by two moorings. Emanating from the submarine ridges northwest of Sumatra Island and south of Car Nicobar, two types of ISWs, referred to as S- and C-ISWs, respectively, were identified in the measurements, and S-ISWs were generally found to be stronger than C-ISWs. The observed S- and C-ISWs frequently appeared as multi-wave packets, accounting for 87% and 43% of their observed episodes, respectively. The simultaneous measurements collected by the two moorings featured evident variability along the S-ISW crests, with the average wave amplitude in the northern portion being 36% larger than that in the southern portion. The analyses of the arrival times revealed that the S-ISWs in the northern portion occurred more frequently and arrived more irregularly than those in the southern portion. Moreover, the temporal variability of ISWs drastically differed on monthly and seasonal time scales, characterized by relatively stronger S-ISWs in spring and autumn. Over interannual time scale, the temporal variations in ISWs were generally subtle. The monthly-to-annual variations of ISWs could be mostly explained by the variability in stratification, which could be modulated by the monsoons, the winds in equatorial Indian Ocean and the mesoscale eddies in Andaman Sea. From careful analyses preformed based on the long-term measurements, we argued that the observed ISWs were likely generated via internal tide release mechanism and their generation processes were obviously modulated by background circulations.


2021 ◽  
Author(s):  
Yujun Yu ◽  
Shuya Wang ◽  
Xu Chen

<p>Internal Solitary Waves (ISW) are ubiquitous in the Andaman Sea as revealed by Synthetic Aperture Radar (SAR) images, but their generation mechanism and corresponding influence factors remain unknown. Based on a non-hydrostatic two-dimensional model, the generation of ISW across the channel between the Batti Malv Island and the Car Nicobar Island is investigated. Influences of the topography characteristics, seasonal stratification and tidal forcing are analyzed with a series of sensitivity runs. The simulated results indicate that no apparent ISW appear near the ridge because of small tidal excursion and low Froude number. Instead, they are evolved from the disintegrated internal tides which gradually steepen due to nonlinearity during propagation. East-west asymmetry of ISWs is revealed, which can be attributed to different topographic features on the two sides of the ridge. Two sills on the east side of the ridge further complicate the generation of eastward-propagating internal tides, resulting in the enhancement of ISWs in the Andaman Sea. Seasonally varying stratification has minor effect on the generation and evolution of ISWs. In addition, generation of ISW is mainly contributed by semidiurnal tidal forcing, while diurnal forcing only generates linear internal tides.</p>


2021 ◽  
Author(s):  
Yujun Yu ◽  
Jinhu Wang ◽  
Shuya Wang ◽  
Qun Li ◽  
Xu Chen ◽  
...  

Abstract. Internal solitary waves (ISWs) are ubiquitous in the Andaman Sea, as revealed by synthetic aperture radar (SAR) images, but their generation mechanisms and corresponding influencing factors remain unknown. Based on a nonhydrostatic two-dimensional model, the generation of ISW packets along a transect of a channel lying between Batti Malv Island and Car Nicobar Island is investigated. Additionally, the influences of topographic characteristics, seasonal stratification variables and tidal forcings are analysed through a series of sensitivity runs. The simulated results indicate that bidirectional rank-ordered ISW packets are generated by the nonlinear steepening of internal tides. An east-west ISW asymmetry is observed, which is attributed to distinct topographic characteristics. The surrounding sills are also capable of generating internal wave beams, which modulate the intensity of ISWs. However, the topographic structure of the west flank of the ridge mainly contributes to the suppression of westward ISWs, which decrease the modulating effect of internal wave beams. During spring tide, the generation of ISWs is enhanced. Under neap tide, ISWs are weak, and the east-west ISW asymmetry is less obvious. Moreover, seasonally varied stratification only has a minor effect on the generation and evolution of ISWs.


Sign in / Sign up

Export Citation Format

Share Document