On assuring the accurate parallel alignment of a laser sheet for planar and stereoscopic particle image velocimetry

2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Muhammad Shehzad ◽  
Sean Lawrence ◽  
Callum Atkinson ◽  
Julio Soria
2003 ◽  
Vol 125 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Michael G. Olsen ◽  
Chris J. Bourdon

In microscopic particle image velocimetry (microPIV) experiments, the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image. Unlike in light-sheet PIV, where the depth of the measurement volume is simply the thickness of the laser sheet, in microPIV, the measurement volume depth is a function of the image forming optics of the microscope. In a flowfield with out-of-plane motion, the measurement volume (called the depth of correlation) is also a function of the magnitude of the out-of-plane motion within the measurement volume. Equations are presented describing the depth of correlation and its dependence on out-of-plane motion. The consequences of this dependence and suggestions for limiting its significance are also presented. Another result of the out-of-plane motion is that the height of the PIV signal peak in the correlation plane will decrease. Because the height of the noise peaks will not be affected by the out-of-plane motion, this could lead to erroneous velocity measurements. An equation is introduced that describes the effect of the out-of-plane motion on the signal peak height, and its implications are discussed. Finally, the derived analytical equations are compared to results calculated using synthetic PIV images, and the agreement between the two is seen to be excellent.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sayantan Bhattacharya ◽  
Reid A. Berdanier ◽  
Pavlos P. Vlachos ◽  
Nicole L. Key

Nonintrusive measurement techniques such as particle image velocimetry (PIV) are growing in both capability and utility for turbomachinery applications. However, the restrictive optical access afforded by multistage research compressors typically requires the use of a periscope probe to introduce the laser sheet for measurements in a rotor passage. This paper demonstrates the capability to perform three-dimensional PIV in a multistage compressor without the need for intrusive optical probes and requiring only line-of-sight optical access. The results collected from the embedded second stage of a three-stage axial compressor highlight the rotor tip leakage flow, and PIV measurements are qualitatively compared with high-frequency response piezoresistive pressure measurements to assess the tip leakage flow identification.


Author(s):  
Marek Czapp ◽  
Matthias Utschick ◽  
Johannes Rutzmoser ◽  
Thomas Sattelmayer

Investigations on gas-liquid flows in horizontal pipes are of immanent importance for Reactor Safety Research. In case of a breakage of the main cooling circuit of a Pressurized Water Reactor (PWR), the pressure losses of the gas-liquid flow significantly govern the loss of coolant rate. The flow regime is largely determined by liquid and gas superficial velocities and contains slug flow that causes high-pressure pulsations to the infrastructure of the main cooling circuit. Experimental and numerical investigations on adiabatic slug flow of a water-air system were carried out in a horizontal pipe of about 10 m length and 54 mm diameter at atmospheric pressure and room temperature. Stereoscopic high-speed Particle Image Velocimetry in combination with Laser Induced Fluorescence was successfully applied on round pipe geometry to determine instantaneous three-dimensional water velocity fields of slug flows. After grid independence studies, numerical simulations were run with the open-source CFD program OpenFOAM. The solver uses the VOF method (Volume of Fluid) with phase-fraction interface capturing approach based on interface compression. It provides mesh refinement at the interfacial area to improve resolution of the interface between the two phases. Furthermore, standard k-ε turbulence model was applied in an unsteady Reynolds averaged Navier Stokes (URANS) model to resolve self-induced slug formation. The aim of this work is to present the feasibility of both relatively novel possibilities of determining two-phase slug flows in pipes. Experimental and numerical results allow the comparison of the slug initiation and expansion process with respect to their axial velocities and cross-sectional void fractions.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


Sign in / Sign up

Export Citation Format

Share Document