scholarly journals A single-camera synthetic Schlieren method for the measurement of free liquid surfaces

2021 ◽  
Vol 62 (11) ◽  
Author(s):  
Huixin Li ◽  
Marc Avila ◽  
Duo Xu
2021 ◽  
Author(s):  
Duo Xu ◽  
Huixin Li ◽  
Marc Avila

Abstract A single-camera synthetic Schlieren method is introduced here to measure two-dimensional topography and depth of dynamic free liquid surfaces. The method is simple and easy to implement. Because of light refraction (following Snell’s law), markers on a flat bottom which are seen through the surfaces of a transparent liquid are virtually displaced. This leads to a governing equation that the liquid surface depth (and its topography) is associated with the marker displacement. In the equation, the refractive index of the liquid (e.g. water) can be obtained by a refractometer (or from a technical reference), and the displacements of the markers can be obtained by a cross-correlation method which is usually used in particle image velocimetry. In the equation, the only unknown, the depth of the surface, can be obtained by solving the governing equation with boundary conditions. Unlike free-surface synthetic Schlieren (FS-SS) of Moisy et al. (Exp. Fluids, 1021, 46, 2009), our method does not require a reference depth (which is obtained before or after experiments), so that flows with temporally evolving depth can be measured. Experiments of liquid ripples and dam-break flows were performed to test the method. The results agree well with those obtained with FS-SS and visualization measurements.


1989 ◽  
Vol 50 (C7) ◽  
pp. C7-21-C7-22
Author(s):  
J. ALS-NIELSEN

2010 ◽  
Vol 1 (1) ◽  
pp. 51-62
Author(s):  
Marta Braun

Eadweard Muybridge's 1887 photographic atlas Animal Locomotion is a curious mixture of art and science, a polysemic text that has been subject to a number of readings. This paper focuses on Muybridge's technology. It seeks to understand his commitment to making photographs with a battery of cameras rather than a single camera. It suggests reasons for his choice of apparatus and shows how his final work, The Human Figure in Motion (1901), justifies the choices he made.


2009 ◽  
Author(s):  
Kenneth McKendrick ◽  
Carla Waring ◽  
Paul A. Bagot ◽  
Matthew L. Costen

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2232
Author(s):  
Antonio Albiol ◽  
Alberto Albiol ◽  
Carlos Sánchez de Merás

Automated fruit inspection using cameras involves the analysis of a collection of views of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is analyzed independently. However, in order to get a global score of the fruit quality, it is necessary to match the defects between adjacent views to prevent counting them more than once and assert that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid size and pose in each view is estimated from the silhouettes of all views. Once the geometric model has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have been estimated, it is possible to use them to propagate defects to neighbor views or to even build a topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the map) instead of a collection of individual views. A large effort was made to make this method as fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU using a single core.


Sign in / Sign up

Export Citation Format

Share Document