scholarly journals Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials

Author(s):  
Martin Jastroch ◽  
Elias T. Polymeropoulos ◽  
Michael J. Gaudry

AbstractThe thermogenic mechanisms supporting endothermy are still not fully understood in all major mammalian subgroups. In placental mammals, brown adipose tissue currently represents the most accepted source of adaptive non-shivering thermogenesis. Its mitochondrial protein UCP1 (uncoupling protein 1) catalyzes heat production, but the conservation of this mechanism is unclear in non-placental mammals and lost in some placentals. Here, we review the evidence for and against adaptive non-shivering thermogenesis in marsupials, which diverged from placentals about 120–160 million years ago. We critically discuss potential mechanisms that may be involved in the heat-generating process among marsupials.

1992 ◽  
Vol 15 ◽  
pp. 174-175
Author(s):  
L. Clarke ◽  
S. van de Waal ◽  
M. A. Lomax ◽  
M. E. Symonds

In the ovine foetus brown adipose tissue (BAT) is mainly found in the perirenal region and grows rapidly relative to body weight between 70 to 120 days of gestation (Alexander, 1978). After this stage only a small amount of BAT growth occurs in comparison with that of the whole foetus, and in the case of undernutrition may decline (Alexander, 1978). Maternal cold stress, induced by winter shearing twin-bearing pregnant ewes 8 weeks before parturition improves lamb birth weight and lamb growth rate independently of effects on maternal food intake (Symonds, Bryant and Lomax, 1986 and 1990). At the same time this can stimulate the in vivo capacity for non-shivering thermogenesis in newborn lambs (Stott and Slee, 1985). The following study extends these findings by investigating the extent to which changing the maternal metabolic environment influences BAT development over the final month of gestation.Thirty-two Bluefaced Leicester × Swaledale ewes were housed individually at ambient temperature (−6 to 19°C) 6 weeks prior to lambing and 2 weeks later 15 ewes were shorn. Ewes were offered daily a diet comprising 200 g barley concentrate and 1 kg chopped hay. Between 116 and 145 days of gestation and within 2 h of birth ewes were humanely slaughtered with an overdose of barbiturate and foetal or neonatal perirenal BAT sampled, born from shorn or unshorn ewes. The thermogenic capacity of BAT was assessed by guanosine-5′-diphosphate (GDP) binding to uncoupling protein in mitochondrial preparations (Cooper, Dascombe, Rothwell and Vale, 1989) and the amount of mitochondrial protein measured from cytochrome Coxidase activity.


Author(s):  
Soren Z. Coulson ◽  
Cayleih E. Robertson ◽  
Sajeni Mahalingam ◽  
Grant B. McClelland

High altitude environments challenge small mammals with persistent low ambient temperatures that require high rates of aerobic heat production in face of low O2 availability. An important component of thermogenic capacity in rodents is non-shivering thermogenesis (NST) mediated by uncoupled mitochondrial respiration in brown adipose tissue (BAT). NST is plastic, and capacity for heat production increases with cold acclimation. However, in lowland native rodents, hypoxia inhibits NST in BAT. We hypothesize that highland deer mice (Peromyscus maniculatus) overcome the hypoxic inhibition of NST through changes in BAT mitochondrial function. We tested this hypothesis using lab born and raised highland and lowland deer mice, and a lowland congeneric (P. leucopus), acclimated to either warm normoxia (25°C, 760 mmHg) or cold hypoxia (5°C, 430 mmHg). We determined the effects of acclimation and ancestry on whole-animal rates of NST, the mass of interscapular BAT (iBAT), and uncoupling protein (UCP)-1 protein expression. To identify changes in mitochondrial function, we conducted high-resolution respirometry on isolated iBAT mitochondria using substrates and inhibitors targeted to UCP-1. We found that rates of NST increased with cold hypoxia acclimation but only in highland deer mice. There was no effect of cold hypoxia acclimation on iBAT mass in any group, but highland deer mice showed increases in UCP-1 expression and UCP-1 stimulated mitochondrial respiration in response to these stressors. Our results suggest that highland deer mice have evolved to increase the capacity for NST in response to chronic cold hypoxia, driven in part by changes in iBAT mitochondrial function.


2015 ◽  
Vol 112 (22) ◽  
pp. 6973-6978 ◽  
Author(s):  
Yang Lee ◽  
Chrissie Willers ◽  
Edmund R. S. Kunji ◽  
Paul G. Crichton

Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.


2004 ◽  
Vol 84 (1) ◽  
pp. 277-359 ◽  
Author(s):  
BARBARA CANNON ◽  
JAN NEDERGAARD

Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogen-esis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.


2008 ◽  
Vol 19 (12) ◽  
pp. 840-847 ◽  
Author(s):  
Sachiko Nomura ◽  
Takashi Ichinose ◽  
Manabu Jinde ◽  
Yu Kawashima ◽  
Kaoru Tachiyashiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document