Iterative reliable design space approach for efficient reliability-based design optimization

2019 ◽  
Vol 36 (1) ◽  
pp. 151-169 ◽  
Author(s):  
Chen Jiang ◽  
Haobo Qiu ◽  
Xiaoke Li ◽  
Zhenzhong Chen ◽  
Liang Gao ◽  
...  
2006 ◽  
Vol 129 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Alan P. Bowling ◽  
John E. Renaud ◽  
Jeremy T. Newkirk ◽  
Neal M. Patel ◽  
Harish Agarwal

In this investigation a robotic system’s dynamic performance is optimized for high reliability under uncertainty. The dynamic capability equations (DCE) allow designers to predict the dynamic performance of a robotic system for a particular configuration and reference point on the end effector (i.e., point design). Here the DCE are used in conjunction with a reliability-based design optimization (RBDO) strategy in order to obtain designs with robust dynamic performance with respect to the end-effector reference point. In this work a unilevel performance measure approach is used to perform RBDO. This is important for the reliable design of robotic systems in which a solution to the DCE is required for each constraint call. The method is illustrated on a robot design problem.


Author(s):  
S. Shan ◽  
G. Gary Wang

Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research is focused on performance functions having explicit analytical expression and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a “black-box” and their gradients are not available or not reliable. Based on the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It theoretically avoids the nested optimization and probabilistic assessment loop. This approach can apply to RBDO problems with either analytical or blackbox performance functions. Three well known numerical problems from the literature are used to test and demonstrate the effectiveness of RSP.


Author(s):  
Hao Pan ◽  
Zhimin Xi ◽  
Ren-Jye Yang

Reliability-based design optimization (RBDO) has been widely used to design engineering products with minimum cost function while meeting defined reliability constraints. Although uncertainties, such as aleatory uncertainty and epistemic uncertainty, have been well considered in RBDO, they are mainly considered for model input parameters. Model uncertainty, i.e., the uncertainty of model bias which indicates the inherent model inadequacy for representing the real physical system, is typically overlooked in RBDO. This paper addresses model uncertainty characterization in a defined product design space and further integrates the model uncertainty into RBDO. In particular, a copula-based bias correction approach is proposed and results are demonstrated by two vehicle design case studies.


Author(s):  
Po Ting Lin ◽  
Shu-Ping Lin

Reliability-Based Design Optimization (RBDO) algorithms have been developed to solve design optimization problems with existence of uncertainties. Traditionally, the original random design space is transformed to the standard normal design space, where the reliability index can be measured in a standardized unit. In the standard normal design space, the Modified Reliability Index Approach (MRIA) measured the minimum distance from the design point to the failure region to represent the reliability index; on the other hand, the Performance Measure Approach (PMA) performed inverse reliability analysis to evaluate the target function performance in a distance of reliability index away from the design point. MRIA was able to provide stable and accurate reliability analysis while PMA showed greater efficiency and was widely used in various engineering applications. However, the existing methods cannot properly perform reliability analysis in the standard normal design space if the transformation to the standard normal space does not exist or is difficult to determine. To this end, a new algorithm, Ensemble of Gaussian Reliability Analyses (EoGRA), was developed to estimate the failure probability using Gaussian-based Kernel Density Estimation (KDE) in the original design space. The probabilistic constraints were formulated based on each kernel reliability analysis for the optimization processes. This paper proposed an efficient way to estimate the constraint gradient and linearly approximate the probabilistic constraints with fewer function evaluations. Some numerical examples with various random distributions are studied to investigate the numerical performances of the proposed method. The results showed EoGRA is capable of finding correct solutions in some problems that cannot be solved by traditional methods.


Sign in / Sign up

Export Citation Format

Share Document