A novel iterative integration regularization method for ill-posed inverse problems

Author(s):  
Ce Huang ◽  
Li Wang ◽  
Minghui Fu ◽  
Zhong-Rong Lu ◽  
Yanmao Chen
2018 ◽  
Vol 26 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Jens Flemming

AbstractVariational source conditions proved to be useful for deriving convergence rates for Tikhonov’s regularization method and also for other methods. Up to now, such conditions have been verified only for few examples or for situations which can be also handled by classical range-type source conditions. Here we show that for almost every ill-posed inverse problem variational source conditions are satisfied. Whether linear or nonlinear, whether Hilbert or Banach spaces, whether one or multiple solutions, variational source conditions are a universal tool for proving convergence rates.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
A. De Cezaro

We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the existence of generalized minimizers for the Tikhonov functional. Moreover, we prove convergence and stability for regularized solutions with respect to the noise level, characterizing the level-set approach as a regularization method for inverse problems. We also show the applicability of the proposed level-set method in some interesting inverse problems arising in elliptic PDE models.


1983 ◽  
Vol 45 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
O. M. Alifanov
Keyword(s):  

2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


Author(s):  
C. W. Groetsch ◽  
Martin Hanke

Abstract A simple numerical method for some one-dimensional inverse problems of model identification type arising in nonlinear heat transfer is discussed. The essence of the method is to express the nonlinearity in terms of an integro-differential operator, the values of which are approximated by a linear spline technique. The inverse problems are mildly ill-posed and therefore call for regularization when data errors are present. A general technique for stabilization of unbounded operators may be applied to regularize the process and a specific regularization technique is illustrated on a model problem.


Author(s):  
Mingyong Zhou

Background: Complex inverse problems such as Radar Imaging and CT/EIT imaging are well investigated in mathematical algorithms with various regularization methods. However it is difficult to obtain stable inverse solutions with fast convergence and high accuracy at the same time due to the ill-posed property and non-linear property. Objective: In this paper, we propose a hierarchical and multi-resolution scalable method from both algorithm perspective and hardware perspective to achieve fast and accurate solu-tions for inverse problems by taking radar and EIT imaging as examples. Method: We present an extension of discussion on neuromorphic computing as brain-inspired computing method and the learning/training algorithm to design a series of problem specific AI “brains” (with different memristive values) to solve a general complex ill-posed inverse problems that are traditionally solved by mathematical regular operators. We design a hierarchical and multi-resolution scalable method and an algorithm framework to train AI deep learning neuron network and map into the memristive circuit so that the memristive val-ues are optimally obtained. We propose FPGA as an emulation implementation for neuro-morphic circuit as well. Result: We compared the methodology between our approach and traditional regulariza-tion method. In particular we use Electrical Impedance Tomography (EIT) and Radar imaging as typical examples to compare how to design an AI deep learning neuron network architec-tures to solve inverse problems. Conclusion: With EIT imaging as a typical example, we show that any moderate complex inverse problem, as long as it can be described as combinational problem, AI deep learning neuron network is a practical alternative approach to try to solve the inverse problems with any given expected resolution accuracy, as long as the neuron network width is large enough and computational power is strong enough for all combination samples training purpose.


2019 ◽  
Vol 27 (3) ◽  
pp. 317-340 ◽  
Author(s):  
Max Kontak ◽  
Volker Michel

Abstract In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90  of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.


Author(s):  
Risheng Liu

Numerous tasks at the core of statistics, learning, and vision areas are specific cases of ill-posed inverse problems. Recently, learning-based (e.g., deep) iterative methods have been empirically shown to be useful for these problems. Nevertheless, integrating learnable structures into iterations is still a laborious process, which can only be guided by intuitions or empirical insights. Moreover, there is a lack of rigorous analysis of the convergence behaviors of these reimplemented iterations, and thus the significance of such methods is a little bit vague. We move beyond these limits and propose a theoretically guaranteed optimization learning paradigm, a generic and provable paradigm for nonconvex inverse problems, and develop a series of convergent deep models. Our theoretical analysis reveals that the proposed optimization learning paradigm allows us to generate globally convergent trajectories for learning-based iterative methods. Thanks to the superiority of our framework, we achieve state-of-the-art performance on different real applications.


Sign in / Sign up

Export Citation Format

Share Document