scholarly journals On Bounding the Difference of the Maximum Degree and the Clique Number

2014 ◽  
Vol 31 (5) ◽  
pp. 1689-1702 ◽  
Author(s):  
Oliver Schaudt ◽  
Vera Weil
10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2019 ◽  
Vol 62 (1) ◽  
pp. 23-35
Author(s):  
Wouter Cames van Batenburg ◽  
Ross J. Kang

AbstractLet $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Nihat Akgunes ◽  
Yasar Nacaroglu ◽  
Sedat Pak

The concept of monogenic semigroup graphs Γ S M is firstly introduced by Das et al. (2013) based on zero divisor graphs. In this study, we mainly discuss the some graph properties over the line graph L Γ S M of Γ S M . In detail, we prove the existence of graph parameters, namely, radius, diameter, girth, maximum degree, minimum degree, chromatic number, clique number, and domination number over L Γ S M .


2013 ◽  
Vol 22 (2) ◽  
pp. 253-281 ◽  
Author(s):  
DANIEL JOHANNSEN ◽  
MICHAEL KRIVELEVICH ◽  
WOJCIECH SAMOTIJ

A graph is calleduniversalfor a given graph class(or, equivalently,-universal) if it contains a copy of every graph inas a subgraph. The construction of sparse universal graphs for various classeshas received a considerable amount of attention. There is particular interest in tight-universal graphs, that is, graphs whose number of vertices is equal to the largest number of vertices in a graph from. Arguably, the most studied case is that whenis some class of trees. In this work, we are interested in(n,Δ), the class of alln-vertex trees with maximum degree at most Δ. We show that everyn-vertex graph satisfying certain natural expansion properties is(n,Δ)-universal. Our methods also apply to the case when Δ is some function ofn. Since random graphs are known to be good expanders, our result implies, in particular, that there exists a positive constantcsuch that the random graphG(n,cn−1/3log2n) is asymptotically almost surely (a.a.s.) universal for(n,O(1)). Moreover, a corresponding result holds for the random regular graph of degreecn2/3log2n. Another interesting consequence is the existence of locally sparsen-vertex(n,Δ)-universal graphs. For example, we show that one can (randomly) constructn-vertex(n,O(1))-universal graphs with clique number at most five. This complements the construction of Bhatt, Chung, Leighton and Rosenberg (1989), whose(n,Δ)-universal graphs with merelyO(n)edges contain large cliques of size Ω(Δ). Finally, we show that random graphs are robustly(n,Δ)-universal in the context of the Maker–Breaker tree-universality game.


2011 ◽  
Vol 105-107 ◽  
pp. 2275-2278 ◽  
Author(s):  
Hai Na Sun

. The (2,1)-total labelling of the tree has been widely studied. In this paper we study the (3,1)-total labelling number of the tree. The (3,1)-total labelling number of the tree is the width of the smallest range of integers to label the vertices and the edges such that no two adjacent vertices or two adjacent edges have the same labels and the difference between the labels of a vertex and its incident edges is at least 3. We prove that if the distance of the maximum degree in the tree is not 2, then the (3,1)-total labelling number is the maximum degree plus 3.


10.37236/4626 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.


2014 ◽  
Vol Vol. 16 no. 3 (Discrete Algorithms) ◽  
Author(s):  
Konstanty Junosza-Szaniawski ◽  
Pawel Rzazewski

Discrete Algorithms International audience The generalized list T-coloring is a common generalization of many graph coloring models, including classical coloring, L(p,q)-labeling, channel assignment and T-coloring. Every vertex from the input graph has a list of permitted labels. Moreover, every edge has a set of forbidden differences. We ask for a labeling of vertices of the input graph with natural numbers, in which every vertex gets a label from its list of permitted labels and the difference of labels of the endpoints of each edge does not belong to the set of forbidden differences of this edge. In this paper we present an exact algorithm solving this problem, running in time O*((τ+2)n), where τ is the maximum forbidden difference over all edges of the input graph and n is the number of its vertices. Moreover, we show how to improve this bound if the input graph has some special structure, e.g. a bounded maximum degree, no big induced stars or a perfect matching.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Jan Kára ◽  
Jan Kratochvil ◽  
David R. Wood

Graphs and Algorithms International audience We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27―48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an 'almost balanced' ordering.


Sign in / Sign up

Export Citation Format

Share Document