Growth, P uptake in grain legumes and changes in rhizosphere soil P pools

2011 ◽  
Vol 48 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Hasnuri Mat Hassan ◽  
Petra Marschner ◽  
Ann McNeill ◽  
Caixian Tang
Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 283 ◽  
Author(s):  
Valdevan Rosendo dos Santos ◽  
Amin Soltangheisi ◽  
Henrique Junqueira Franco ◽  
Oriel Kolln ◽  
André Vitti ◽  
...  

Phosphate fertilizer placement at sugarcane (Saccharum spp.) establishment can strongly influence the distribution of soil P pools over crop cycles, and has a great influence in the availability of this nutrient to plant uptake. Our main objective was to evaluate sugarcane yield as well as changes in the distribution of soil P pools, under phosphate fertilizer sources and their management, over two years of sugarcane cultivation. The experiment was established in August 2013 with two phosphate sources (TSP (triple superphosphate) and RP (Bayovar rock phosphate)) and three application methods: as broadcast, at planting furrow and combining half broadcast/half plant furrow, all at the rate of 180 kg ha−1 soluble P2O5 being applied at crop establishment. Sugarcane yield and P uptake was evaluated, and soil was sampled after harvest in August 2015 to analyze P fractions. Substantial amounts of P derived from fertilizers were accumulated as inorganic and/or organic moderately labile P. Broadcast application of TSP was not able to enhance total P in 0–40 cm layer compared to control treatment. In general, TSP was more effective to supply P for sugarcane and keep more of this nutrient in all labile fractions in the soil. However, the potential residual effect of RP (Ca-P) is expected in the following years, slowly solubilizing over the time.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 68
Author(s):  
Kaoru Imai ◽  
Soh Sugihara ◽  
Jun Wasaki ◽  
Haruo Tanaka

Phosphorus (P) is an essential nutrient for crop production, while most soil P is the less labile P associated with Aluminum (Al) and Iron (Fe) in acidic soils of Japan. The objectives of this study were to evaluate the effects of two contrasting P-efficient legumes (white lupin, WL (Lupinus albus L.); and groundnut, GN (Arachis hypogaea L.)) on rhizosphere soil P dynamics in different soil types of Japan, such as Al-rich volcanic-soil, Fe-rich red-yellow-soil, and sandy-soil, with or without historical fertilization managements (3 soil types × 2 managements = 6 soil samples). We conducted a 56-day pot experiment, and analyzed the plant P uptake and fractionated P of rhizosphere and bulk soils, based on the Hedley-fractionation method. We observed that GN P uptake was generally larger than that in WL in most soil types and managements. WL significantly decreased the labile P in most soils and also decreased the less labile inorganic P (Pi) and organic P (Po) in fertilized Red-yellow-soil, which has much crystalline Fe, though GN did not. In contrast, both WL and GN significantly decreased the less labile Pi in fertilized volcanic-soil, which has much non-crystalline Al. These results indicate that (1) characteristics of less labile P uptake by P efficient legumes were different between the soil types and managements, and (2) WL efficiently solubilized the less labile P than GN in fertilized red-yellow soil, while GN efficiently absorbed the larger amount of P than WL, especially in volcanic- and sandy-soil.


2021 ◽  
Vol 3 ◽  
Author(s):  
Walid Janati ◽  
Bouchra Benmrid ◽  
Wissal Elhaissoufi ◽  
Youssef Zeroual ◽  
Joshua Nasielski ◽  
...  

Biological nitrogen fixation (BNF) refers to a bacterially mediated process by which atmospheric N2 is reduced, either symbiotically or non-symbiotically, into ammonia (NH3) in the presence of the enzyme complex nitrogenase. In N2-fixing grain legumes, BNF is often hampered under low phosphorus (P) availability. The P status of legumes, particularly nodules, as well as P availability in the rhizosphere, play a vital role in regulating BNF. Aside from increasing P availability via fertilization, other plant traits (i.e., extensive rooting system and their spatial distribution, hyper-nodulation, root exudates, rhizosphere acidification, and heterogeneity) contribute to greater P uptake and hence more effective BNF. The positive interaction between P availability and BNF can be exploited through beneficial soil P solubilizing microorganisms (PSM). These microorganisms can increase plant-available P by modifying either rhizosphere soil processes or promoting plant traits, which lead to increased P uptake by the production of plant growth-promoting substances, both of which could indirectly influence the efficiency of BNF in legumes. In this review, we report on the importance of microbial P bio-solubilization as a pathway for improving BNF in grain legumes via PSM and P solubilizing bacteria (PSB). Because BNF in legumes is a P-requiring agro-ecological process, the ability of soil PSB to synergize with the rhizobial strains is likely a key belowground process worth investigating for advanced research aiming to improve rhizosphere biological functions necessary for sustainable legume-based cropping systems.


2017 ◽  
Vol 63 (No. 10) ◽  
pp. 475-482 ◽  
Author(s):  
Vogel Telse ◽  
Nelles Michael ◽  
Eichler-Löbermann Bettina

In this study, the phosphorus (P) fertilizing effects of struvite, one thermochemical-treated sewage sludge ash (SSA) based on Ca-P (Ca-SSA) and one full sulfuric acid-digested SSA based on Al-P (Al-SSA) were analysed in comparison to triple superphosphate (TSP) and a control treatment (CON) without P application in a two-year field experiment. In the field experiment, the effects of the recycling products on crop yield, P uptake and labile soil P fractions were analysed. In addition, the effect of nitrogen and magnesium contained in struvite was investigated in the second year of the experiment compared to TSP and CON. In the first year, spring barley was cultivated in the field experiment; and in the second year, it was forage rye followed by sorghum. In the second year, the relative P effectiveness (forage rye, sorghum) of the recycling products compared to TSP increased in the order: Ca-SSA (81%, 91%) ≤ Al-SSA (91%, 96%) = struvite (102%, 110%). In addition, an magnesium fertilizing effect of struvite could be demonstrated. The results show that the recycling products from wastewater treatment are appropriate to substitute rock phosphate-based fertilizers.


2017 ◽  
Vol 14 (8) ◽  
pp. 2055-2068 ◽  
Author(s):  
Jie Zhang ◽  
Arthur H. W. Beusen ◽  
Dirk F. Van Apeldoorn ◽  
José M. Mogollón ◽  
Chaoqing Yu ◽  
...  

Abstract. Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900–2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.


2021 ◽  
Author(s):  
Zuzana Frkova ◽  
Chiara Pistocchi ◽  
Yuliya Vystavna ◽  
Katerina Capkova ◽  
Jiri Dolezal ◽  
...  

Abstract. At the early stages of pedogenesis, the dynamics of phosphorus (P) in soils are controlled by microbial communities, the physicochemical properties of the soil and the environmental conditions. While various microorganisms involved in carrying out biogeochemical processes have been identified, little is known about the actual contribution of microbial processes, such as organic P hydrolysis and microbial P turnover, to P cycling. We thus focused on processes driven by microbes and how they affect the size and cycling of organic and inorganic soil P pools along a soil chronosequence in the Chamser Kangri glacier forefield (Western Himalayas). The rapid retreat of the glacier allowed us to study the early stages of soil formation under cold arid climate. Biological P transformations were studied with the help of the isotopic composition of oxygen (O) in phosphate (δ18OP) coupled to sequential P fractionation performed on soil samples from four sites of different age spanning 0 to 100–150 years. The mineral P, i.e. 1M HCl-extractable P, represented still 95 % of the total P stock after approximately 100 years of soil development. Its isotopic composition was similar to the parent material also at the most developed site. Primary phosphate minerals, therefore, mostly composed this pool. The δ18OP of the available P and the P bound to Fe and Al oxides instead differed from that of the parent material, suggesting that these pools underwent biological turnover. The isotopic composition of O in of the available P was mostly controlled by the microbial P, suggesting fast exchanges occurred between these two pools possibly fostered by repeated freezing-thawing and drying-rewetting cycles. The release of P from organic P become increasingly important with soil age, constituting one third of the P flux to available P at the oldest site. Accordingly, the lighter isotopic composition of the P bound to Fe and Al oxides at the oldest site indicated that this pool contained phosphate released by organic P mineralization. Compared to previous studies on early pedogenesis under alpine or cold climate, our findings suggest a much slower decrease of the P-bearing primary minerals during the first 100 years of soil development under extreme condition. However, they provide evidence that, by driving short-term P dynamics, microbes play an important role in controlling the redistribution of primary P into inorganic and organic soil P pools.


2003 ◽  
Vol 83 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Z. Zheng ◽  
L. E. Parent ◽  
J. A. MacLeod

The P dynamics in soils should be quantified in agricultural soils to improve fertilizer P (FP) efficiency while limiting the risk of P transfer from soils to water bodies. This study assessed P transformations following FP addition to Gleysolic soils. A pot experiment was conducted with five soils varying in texture from sandy loam to heavy clay, and receiving four FP rates under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. Soil resin-P and NaHCO3-Pi contents were interactively affected by texture and FP. The NaHCO3-Po, NaOH-Po, HCl-P and H2SO4-P were only affected by soil texture. Proportions of 78 and 90% of the variation in labile and total P were, respectively, related to soil clay content. The FP addition increased resin-P, NaHCO3-Pi and NaOH-Pi and -Po contents in coarse-textured soils, but the amount added was not sufficient to mask the initial influence of soil texture on the sizes of soil P pools. Plant P uptake was proportional to FP rate but less closely linked to clay content. The average increase in labile P per unit of total FP added in excess of plant exports was 0.85, 0.8 2 , 0.73, 0.55 and 0.24 for the sandy loam, loam, clay loam, clay and heavy clay soil, respectively. The results of this study stress the important of considering soil texture in Gleysolic soils when assessing P accumulation and transformations in soils, due to commercial fertilizers applied in excess of crop removal. Key words: P fractions, clay content, fertilizer P, plant P uptake, soil texture


Sign in / Sign up

Export Citation Format

Share Document