The role of initial cloud condensation nuclei concentration in hail using the WRF NSSL 2-moment microphysics scheme

2017 ◽  
Vol 34 (9) ◽  
pp. 1106-1120 ◽  
Author(s):  
Xiaofei Li ◽  
Qinghong Zhang ◽  
Huiwen Xue
2010 ◽  
Vol 10 (2) ◽  
pp. 3717-3754 ◽  
Author(s):  
M. T. Woodhouse ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
S. M. Vallina ◽  
M. Vogt ◽  
...  

Abstract. The emission of dimethylsulphide (DMS) gas by phytoplankton and the subsequent formation of aerosol has long been suggested as an important climate regulation mechanism. The key aerosol quantity is the number concentration of cloud condensation nuclei (CCN), but until recently global models did not include the necessary aerosol physics to quantify CCN. Here we use a global aerosol microphysics model to calculate the sensitivity of CCN to changes in DMS emission using multiple present-day and future sea-surface DMS climatologies. Calculated annual fluxes of DMS to the atmosphere for the five model-derived and one observations based present day climatologies are in the range 15.1 to 32.3 Tg a−1 sulphur. The impact of DMS climatology on surface level CCN concentrations was calculated in terms of summer and winter hemispheric mean values of ΔCCN/ΔFluxDMS, which varied between −51 and +147 cm−3/(mg m−2 day−1 sulphur), with a mean of 56 cm−3/(mg m−2 day−1 sulphur). The range is due to CCN production in the atmosphere being strongly dependent on the spatial distribution of the emitted DMS. The DMS flux from a future globally warmed climatology was 0.2 Tg a−1 sulphur higher than present day with a mean CCN response of 95 cm−3/(mg m−2 day−1 sulphur) relative to present day. The largest CCN response was seen in the southern Ocean, contributing to a Southern Hemisphere mean annual increase of less than 0.2%. We show that the changes in DMS flux and CCN concentration between the present day and global warming scenario are similar to interannual differences due to variability in windspeed. In summary, although DMS makes a significant contribution to global marine CCN concentrations, the sensitivity of CCN to potential future changes in DMS flux is very low. This finding, together with the predicted small changes in future seawater DMS concentrations, suggests that the role of DMS in climate regulation is very weak.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiying Ye ◽  
Qimin Cao ◽  
Baolin Jiang ◽  
Wenshi Lin

The Weather Research and Forecasting model version 3.2.1 with the Lin microphysics scheme was used herein to simulate super typhoon Usagi, which occurred in 2013. To investigate the effect of the concentration of cloud condensation nuclei (CCN) on the development of typhoon Usagi, a control simulation was performed with a CCN concentration of 100 cm−3, together with two sensitivity tests: C10 and C1000, having CCN concentrations of 10 cm−3 and 1000 cm−3, respectively. The path, intensity, precipitation, microphysical processes, and the release of latent heat resulting from the typhoon in all three simulations were analyzed to show that an increase in CCN concentration leads to decreases in intensity and precipitation, an increase of the cloudless area in the eye of the typhoon, a more disordered cloud system, and less latent heat released through microphysical processes, especially the automatic conversion of cloud water into rainwater. Overall, an increase in CCN concentration reduces the total latent heat released during the typhoon suggesting that typhoon modification by aerosol injection may be optimized using numerical simulations to ensure the strongest release of latent heat within the typhoon.


Nature ◽  
2016 ◽  
Vol 533 (7604) ◽  
pp. 527-531 ◽  
Author(s):  
Jasmin Tröstl ◽  
Wayne K. Chuang ◽  
Hamish Gordon ◽  
Martin Heinritzi ◽  
Chao Yan ◽  
...  

Abstract About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2,3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5,6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7,8,9,10. Although recent studies11,12,13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2,14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.


2021 ◽  
Vol 78 (1) ◽  
pp. 341-350
Author(s):  
Wojciech W. Grabowski ◽  
Hugh Morrison

AbstractThis is a rebuttal of Fan and Khain’s comments (hereafter FK21) on a 2020 paper by Grabowski and Morrison (hereafter GM20) that questions the impact of ultrafine cloud condensation nuclei (CCN) on deep convection. GM20 argues that “cold invigoration,” an increase of the updraft speed from lofting and freezing of additional cloud water in polluted environments, is unlikely because the latent heating from freezing of this cloud water approximately recovers the negative impact on the buoyancy from the weight of this water. FK21 suggest a variety of processes that could invalidate our claim. We maintain that our argument is valid and invite the authors to compare their microphysics scheme with ours in the same simplified modeling framework. However, pollution does affect the partitioning of latent heating within the column and likely leads to convection changes beyond a single diurnal cycle through larger-scale circulation changes. This argument explains impacts seen in our idealized mesoscale simulations and in convective–radiative equilibrium simulations by others. We agree with FK21 on the existence of a “warm invigoration” mechanism but question its interpretation. Consistent with the simulations in GM20, we argue that changes in the buoyancy can be explained by the response of the supersaturation to droplet microphysical changes induced by pollution. The buoyancy change is determined by supersaturation differences between pristine and polluted conditions, while condensation rate responds to these supersaturation changes. Finally, we agree with FK21 that the piggybacking modeling technique cannot prove or disprove invigoration; rather, it is a diagnostic technique that can be used to understand mechanisms driving simulation differences.


Sign in / Sign up

Export Citation Format

Share Document